×

A variational approach for solving nonlocal elliptic problems driven by a \(p(x)\)-biharmonic operator. (English) Zbl 1505.35130

Summary: This paper analyses nonlocal elliptic problems driven by a \(p(x)\)-biharmonic operator. The proof of the result is made by variational methods. One example is presented to demonstrate the application of our main results.

MSC:

35J40 Boundary value problems for higher-order elliptic equations
35A15 Variational methods applied to PDEs

References:

[1] G. A. Afrouzi, A. Hadjian, S. Heidarkhani, Steklov problem involving the p(x)-Laplacian, Electronic Journal of Differential Equations 2014 (2014), no. 134, 1-11. · Zbl 1298.35073
[2] G. A. Afrouzi, A. Hadjian, G. Molica Bisci, Some remarks for one-dimensional mean curvature problems through a local minimization principle, Advances in Nonlinear Analysis 2 (2013), no. 4, 427-441. · Zbl 1283.34014
[3] M. Bohner, G. Caristi, S. Heidarkhani, S. Moradi, A critical point approach to boundary value problems on the real line, Applied Mathematics Letters 76 (2018), 215-220. · Zbl 1388.35063
[4] G. Bonanno, G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Boundary Value Problem 2009 (2009), article number: 670675, 20 pages. · Zbl 1177.34038
[5] F. Cammaroto, A. Chinn��, B. Di Bella, Multiple solutions for a Neumann problem involving the p(x)-Laplacian, Nonlinear Analysis: Theory, Methods & Applications 71 (2009), no. 10, 4486-4492. · Zbl 1167.35381
[6] F. Cammaroto, L. Vilasi, Sequences of weak solutions for a Navier problem driven by the p(x)-biharmonic operator, Minimax Theory and its Applications 4 (2019), no. 1, 71-85. · Zbl 1415.35111
[7] N. T. Chung, Multiplicity results for a class of p(x)-Kirchhoff type equations with combined nonlinearities, Electronic Journal of Qualitative Theory of Differential Equations 2012 (2012), no. 42, 1-13. · Zbl 1340.35039
[8] G. W. Dai, R. F. Hao, Existence of solutions for a p(x)-Kirchhoff-type equation, Journal of Mathematical Analysis and Applications 359 (2009), no. 1, 275-284. · Zbl 1172.35401
[9] G. W. Dai, J. Wei, Infinitely many non-negative solutions for a p(x)-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Analysis: Theory, Methods & Applications 73 (2010), no. 10, 3420-3430. · Zbl 1201.35181
[10] S. G. Deng, A local mountain pass theorem and applications to a double perturbed p(x)-Laplacian equations, Applied Mathematics and Computation 211 (2009), no. 1, 234-241. · Zbl 1173.35045
[11] X. Fan, D. Zhao, On the spaces L p(x) (Ω) and W m,p(x) (Ω), Journal of Mathematical Analysis and Applications 263 (2001), no. 2, 424-446. · Zbl 1028.46041
[12] M. Galewski, G. Molica Bisci, Existence results for one-dimensional fractional equations, Mathematical Methods in the Applied Sciences 39 (2016), no. 6, 1480-1492. · Zbl 1381.34012
[13] B. Ge, Q. M. Zhou, Y. H. Wu, Eigenvalues of the p(x)-biharmonic operator with indefinite weight, Zeitschrift für angewandte Mathematik und Physik 66 (2015), no. 3, 1007-1021. · Zbl 1319.35147
[14] J. R. Graef, S. Heidarkhani, L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results in Mathematics 63 (2013), no. 63, 877-889. · Zbl 1275.35108
[15] M. K. Hamdani, A. Harrabi, F. Mtiri, D. D. Repovš, Existence and multiplicity results for a new p(x)-Kirchhoff problem, Nonlinear Analysis 190 (2020), article: 111598. · Zbl 1433.35093
[16] M. Abolghasemi and S. Moradi, J. Nonl. Evol. Equ. Appl. 2022 (2022) 89-103 · Zbl 1505.35130
[17] S. Heidarkhani, G. A. Afrouzi, S. Moradi, G. Caristi, A variational approach for solving p(x)-biharmonic equations with Navier boundary conditions, Electronic Journal of Differential Equations 2017 (2017), no. 25, 1-15. · Zbl 1381.35036
[18] S. Heidarkhani, G. A. Afrouzi, S. Moradi, G. Caristi, B. Ge, Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions, Zeitschrift für angewandte Mathematik und Physik 67 (2016), no. 3, 1-13. · Zbl 1353.35153
[19] S. Heidarkhani, A. L. A. de Araujo, G. A. Afrouzi, S. Moradi, Existence of three weak solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Fixed Point Theory 21 (2020), no. 2, 525-548. · Zbl 1455.35091
[20] S. Heidarkhani, A. L. A. de Araujo, A. Salari, Infinitely many solutions for nonlocal prob-lems with variable exponent and nonhomogeneous Neumann conditions, Boletim Sociedade Paranaense de Matematica 38 (2020), no. 4, 71-96. · Zbl 1431.35025
[21] S. Heidarkhani, A. L. A. De Araujo, G. A. Afrouzi, S. Moradi, Multiple solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Mathematis-che Nachrichten 91 (2018), no. 2-3, 326-342. · Zbl 1390.35083
[22] S. Heidarkhani, M. Ferrara, A. Salari, G. Caristi, Multiplicity results for p(x)-biharmonic equations with Navier boundary, Complex Variables and Elliptic Equations 61 (2016), no. 11, 1494-1516. · Zbl 1347.35104
[23] S. Heidarkhani, Y. Zhou, G. Caristi , G. A. Afrouzi, S. Moradi, Existence results for fractional differential systems through a local minimization principle, PanAmerican Mathematical Journal, to appear.
[24] S. Heidarkhani, B. Ge, Critical points approaches to elliptic problems driven by a p(x)-Laplacian, Ukrainian Mathematical Journal 66 (2015), no. 12, 1883-1903. · Zbl 1359.35075
[25] S. Heidarkhani, S. Moradi, M. Avci, Critical points approaches to a nonlocal elliptic problem driven by p(x)-biharmonic operator, Georgian Mathematical Journal 29 (2022), no. 1, 55-69. · Zbl 1484.35179
[26] S. Heidarkhani, S. Moradi, D. Barilla, Existence results for second-order boundary-value problems with variable exponents, Nonlinear Analysis: Real World Applications 44 (2018), 40-53. · Zbl 1404.34029
[27] M. Hssini, M. Massar, N. Tsouli, Existence and multiplicity of solutions for a p(x)-Kirchhoff type problems, Boletim da Sociedade Paranaense de Matemática 33 (2015), no. 2, 201-215. · Zbl 1412.35004
[28] G. Kirchhoff, Vorlesungen uber mathematische Physik: Mechanik, Teubner, Leipzig, 1883.
[29] L. Kong, Eigenvalues for a fourth order elliptic problem, Proceedings of the American Mathematical Society 143 (2015), no. 1, 249-258. · Zbl 1317.35166
[30] L. Kong, Multiple solutions for fourth order elliptic problems with p(x)-biharmonic operators, Opuscula Mathematica 36 (2016), no. 2, 253-264. · Zbl 1339.35130
[31] F. F. Liao, S. Heidarkhani, S. Moradi, Multiple solutions for nonlocal elliptic problems driven by p(x)-biharmonic operator, AIMS Mathematics 6 (2021), no. 4, 4156-4172. · Zbl 1525.35091
[32] J. L. Lions, On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos. Inst. Mat. Univ. Fed. Rio de Janeiro, 1977). North-Holland Math. Stud, vol. 30, pp. 284-346, 1978. · Zbl 0404.35002
[33] M. Massar, N. Tsouli, M. Talbi, Multiple solutions for nonlocal system of (p(x), q(x)) Kirchhoff type, Mathematics and Computation 242 (2014), 216-226. · Zbl 1334.35051
[34] Q, Miao, Multiple Solutions for nonlinear Navier boundary systems involving (p 1 (x), . . . , p n (x)) biharmonic problem, Discrete Dynamics in Nature and Society 2016 (2016), 1-10. · Zbl 1418.35140
[35] Q, Miao, Multiple solutions for nonlocal elliptic systems involving p(x)-Biharmonic operator, Mathematics 7 (2019), no. 8, 756, 10 pages.
[36] M. Ružička, Electro-rheological fluids: Modeling and mathematical theory, Lecture Notes in Mathematics, vol. 1784, Springer, Berlin, 2000. · Zbl 0968.76531
[37] B. Ricceri, A general variational principle and some of its applications, Journal of Computa-tional and Applied Mathematics 113 (2000), no. 1-2, 401-410. · Zbl 0946.49001
[38] B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, Journal of Global Optimization 46 (2010), 543-549. · Zbl 1192.49007
[39] Z. Shen, C. Qian, Infinitely many solutions for a Kirchhoff-type problem with non-standard growth and indefinite weight, Zeitschrift für angewandte Mathematik und Physik 66 (2015), no. 2, 399-415. · Zbl 1323.35017
[40] H. Yin, Y. Liu, Existence of three solutions for a Navier boundary value problem involving the p(x)-biharmonic, Bulletin of the Korean Mathematical Society 6 (2013), no. 6, 1817-1826. · Zbl 1283.35050
[41] H. Yin, M. Xu, Existence of three solutions for a Navier boundary value problem involving the p(x)-biharmonic operator, Annales Polonici Mathematici 109 (2013), no. 1 , 47-54. · Zbl 1288.35247
[42] A. Zang, Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear Analysis: Theory, Methods & Applications 69 (2008), no. 10, 3629-3636. · Zbl 1153.26312
[43] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994. · Zbl 0838.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.