×

A variable gain impulsive observer for Lipschitz nonlinear systems with measurement noises. (English) Zbl 1504.93185

Summary: This paper investigates the variable gain impulsive observer design problem for Lipschitz nonlinear systems. It is assumed that the measurements are contaminated by noise and received by observer at aperiodic instants. To establish a tractable design condition for impulsive observers, the piecewise linear interpolation method is used to construct the variable gain function. To quantify the impact of the measurement noises and exogenous disturbance on the estimation error, a Lyapunov-based condition for establishing exponential input-to-state stability (EISS) property of the observation error dynamics is presented. Then it is shown that the EISS condition can be expressed as a set of linear matrix inequalities (LMIs) by introducing a piecewise quadratic Lyapunov function. A convex optimization problem is proposed in which the EISS gain is minimized. Comparisons with the existing methods show the effectiveness of the proposed design technique.

MSC:

93C27 Impulsive control/observation systems
93B53 Observers
93D23 Exponential stability
93D25 Input-output approaches in control theory
Full Text: DOI

References:

[1] Luenberger, G. G., Observing the state of a linear system, IEEE Trans. Milit. Electr., 8, 74-80 (1964)
[2] Rajamani, A., Observers for Lipschitz nonlinear systems, IEEE Trans. Autom. Control, 43, 3, 397-401 (1998) · Zbl 0905.93009
[3] Zhu, F.; Han, Z., A note on observers for Lipschitz nonlinear systems, IEEE Trans. Autom. Control, 47, 10, 1751-1754 (2002) · Zbl 1364.93104
[4] Aboky, C.; Sallet, G.; Vivalda, J. C., Observers for Lipschitz non-linear systems, Int. J. Control, 75, 3, 204-212 (2002) · Zbl 1031.93045
[5] Alessandri, A., Design of observers for Lipschitz nonlinear systems using LMI, IFAC Proc., 37, 13, 459-464 (2004)
[6] Zemouche, A.; Boutayeb, M., Observer design for Lipschitz nonlinear systems: the discrete-time case, IEEE Trans. Circt. Syst. II Exp. Briefs, 53, 8, 777-781 (2006)
[7] Zemouche, A.; Boutayeb, M., Observer synthesis method for Lipschitz nonlinear discrete-time systems with time-delay: an LMI approach, Appl. Math. Comput., 218, 2, 419-429 (2011) · Zbl 1223.93018
[8] Zemouche, A.; Boutayeb, M.; Bara, G. I., Observers for a class of Lipschitz systems with extension to \(h_\infty\) performance analysis, Syst. Control Lett., 57, 1, 18-27 (2008) · Zbl 1129.93006
[9] Zemouche, A.; Boutayeb, M., On LMI conditions to design observers for Lipschitz nonlinear systems, Automatica, 49, 2, 585-591 (2013) · Zbl 1259.93031
[10] Zemouche, A.; Rajamani, R.; Phanomchoeng, G.; Boulkroune, B.; Rafaralahy, H.; Zasadzinski, M., Circle criterion-based \(h_\infty\) observer design for Lipschitz and monotonic nonlinear systems-enhanced LMI conditions and constructive discussions, Automatica, 85, 412-425 (2017) · Zbl 1375.93027
[11] Raff, T.; Allgöwer, F., Observers with impulsive dynamical behavior for linear and nonlinear continuous-time systems, 46th IEEE Conf. Decision, New Orleans, 4287-4292 (2007)
[12] Chen, W.-H.; Li, D.-X.; Lu, X., Impulsive observers with variable update intervals for Lipschitz nonlinear time-delay systems, Int. J. Syst. Sci., 44, 10, 1934-1947 (2013) · Zbl 1307.93075
[13] Zhan, T.; Ma, S.; Liu, X.; Chen, H., Impulsive observer design for a class of switched nonlinear systems with unknown inputs, J. Frankl. Inst., 356, 12, 6757-6777 (2019) · Zbl 1416.93095
[14] Ferrante, F.; Gouaisbaut, F.; Sanfelice, R. G.; Tarbouriech, S., State estimation of linear systems in the presence of sporadic measurements, Automatica, 73, 101-109 (2016) · Zbl 1372.93106
[15] Raff, T.; Allgöwer, F., An observer that converges in finite time due to measurement-based state updates, IFAC Proc., 41, 2, 2693-2695 (2008)
[16] Chen, W.-H.; Yang, W.; Lu, X., Impulsive observer-based stabilisation of uncertain linear systems, IET Control Theory Appl., 8, 3, 149-159 (2014)
[17] Jaramillo, O.; Castillo-Toledo, B.; Gennaro, S. D., Robust regulation for linear systems using impulsive observers, Proc. 58th Conf. Decis. Control, 6313-6318 (2019)
[18] Vinodkumar, A.; Prakash, M.; Joo, Y. H., Impulsive observer-based output control for PMSG-based wind energy conversion system, IET Control Theory Appl., 13, 13, 2056-2064 (2019) · Zbl 07907000
[19] Jaramillo, O.; Castillo-Toledo, B.; Gennaro, S. D., Impulsive observer-based stabilization for a class of Lipschitz nonlinear systems with time-varying uncertainties, J. Frankl. Inst., 357, 17, 12518-12537 (2020) · Zbl 1454.93237
[20] Jaramillo, O.; Castillo-Toledo, B.; Gennaro, S. D., Robust impulsive observer-based stabilization for uncertain nonlinear systems with sampled-output, IEEE Control Syst. Lett., 5, 3, 845-850 (2021)
[21] Etienne, L.; Gennaro, S. D.; Barbot, J. P., Periodic event-triggered observation and control for nonlinear Lipschitz systems using impulsive observers, Int. J. Robust Nonlinear Control, 27, 18, 4363-4380 (2017) · Zbl 1379.93024
[22] Etienne, L.; Khaled, Y.; Gennaro, S. D.; Barbot, J. P., Asynchronous event-triggered observation and control of linear systems via impulsive observers, J. Frankl. Inst., 354, 1, 372-391 (2017) · Zbl 1355.93117
[23] Kalamian, N.; Khaloozadeh, H.; Ayati, M., Design of state-dependent impulsive observer for nonlinear time-delay systems, IET Control Theory Appl., 13, 18, 3155-3163 (2019)
[24] Kalamian, N.; Niri, M. F.; Mehrabizadeh, H., Design of a suboptimal controller based on riccati equation and state-dependent impulsive observer for a robotic manipulator, Proc. 6th Int. Conf. Control, Instrum. Autom., 1-6 (2019)
[25] Kalamian, N.; Khaloozadeh, H.; Ayati, M., Adaptive state-dependent impulsive observer design for nonlinear deterministic and stochastic dynamics with time-delays, ISA Trans., 98, 87-100 (2020)
[26] Kalamian, N.; Khaloozadeh, H.; Ayati, M., On design of adaptive impulsive observer based on comparison system: modifications in stability theory and feasibility centralization, Int. J. Dyn. Control (2022)
[27] Chen, W.-H.; He, H.; Lu, X.; Deng, X., Impulsive observer-based design for state estimation of a class of nonlinear singularly perturbed systems with discrete measurements, Nonlinear Anal.-Hybrid Syst., 41, 101027 (2021) · Zbl 1478.93284
[28] Wen, Y.; Lou, X.; Wu, W.; Cui, B., Impulsive adaptive observer design for a class of hybrid ODE-PDE cascade systems with uncertain parameters, Syst. Control Lett., 154, 104969 (2021) · Zbl 1478.93231
[29] Schaum, A.; Jerono, P.; Feketa, P., Robust impulsive observer design for infinite-dimensional cell population balance models, Int. J. Robust Nonlinear Control, 32, 2, 774-791 (2022) · Zbl 1527.92029
[30] Sferlazza, A.; Tarbouriech, S.; Zaccarian, L., Time-varying sampled-data observer with asynchronous measurements, IEEE Trans. Autom. Control, 64, 2, 869-876 (2019) · Zbl 1482.93096
[31] Etienne, L.; Hetel, L.; Efimov, D.; Petreczky, M., Observer synthesis under time-varying sampling for Lipschitz nonlinear systems, Automatica, 85, 433-440 (2017) · Zbl 1375.93049
[32] Etienne, L.; Hetel, L.; Efimov, D., Observer analysis and synthesis for perturbed Lipschitz systems under noisy time-varying measurements, Automatica, 106, 406-410 (2019) · Zbl 1429.93219
[33] Brogliato, B.; Lozano, R.; Maschke, B.; Egeland, O., Dissipative Systems Analysis and Control: Theory and Applications (2007), Springer-Verlag: Springer-Verlag U.K., London · Zbl 1121.93002
[34] Chen, W.-H.; Ruan, Z.; Zheng, W. X., Stability and \(l_2\) -gain analysis for impulsive delay systems: an impulse-time-dependent discretized Lyapunov functional method, Automatica, 86, 129-137 (2017) · Zbl 1375.93099
[35] Nadri, M.; Hammouri, H.; Grajales, R. M., Observer design for uniformly observable systems with sampled measurements, IEEE Trans. Autom. Control, 58, 3, 757-762 (2013) · Zbl 1369.93106
[36] Raff, T.; Kogel, M.; Allgöwer, F., Observer with sample-and-hold updating for lipschitz nonlinear systems with nonuniformly sampled measurements, Proc. Amer. Control Conf., 5254-5257 (2008)
[37] Rajamani, R.; Cho, Y. M., Existence and design of observers for nonlinear systems: relation to distance to unobservability, Int. J. Control, 69, 5, 717-731 (1998) · Zbl 0933.93019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.