×

Robust impulsive observer design for Infinite-dimensional cell population balance models. (English) Zbl 1527.92029

Summary: The observer design problem for a class of cell population balance models, describing the time evolution of the cell mass density distribution function and the substrate concentration in a continuous-stirred tank bioreactor with irregular discrete-time measurements of the cell mass distribution is considered. The model consists of a partial integro-differential equation coupled with an ordinary differential equation. Using the theory of impulsive systems sufficient conditions for the input-to-state-stability (ISS) of the observation error in the state-space \(L^1\times\mathbb{R}_+\) with respect to the measurement uncertainty are derived in terms of the maximum time between successive measurements and the ISS gain. In absence of measurement uncertainty the convergence conditions imply exponential stability of the observation error dynamics. Besides these rigorous conditions, application-oriented tuning guidelines are established. The theoretical results are illustrated with numerical simulations including a comparison with a continuous-discrete extended Kalman filter based on the numerical approximation, showing that a similar accuracy is achieved when using a finite-dimensional approximation of the proposed impulsive observer scheme with a considerably lower computational effort.
{© 2021 The Authors. International Journal of Robust and Nonlinear Control published by John Wiley & Sons Ltd.}

MSC:

92C75 Biotechnology
93C27 Impulsive control/observation systems
93B35 Sensitivity (robustness)
93B53 Observers
93D25 Input-output approaches in control theory

References:

[1] MhaskarP, HjortsoMA, HensonM. Cell population modeling and parameter estimation for continuous cultures of saccharomyces cerevisiae. Biotechnol Prog. 2002;18:1010‐1026.
[2] DaoutidisP, HensonM. Dynamics and control of cell populations in continuous bioreactors. Proceedings of the AIChe Symposium Series; Vol. 326, 2002:274‐289.
[3] MantzarisNV, DaoutidisP. Cell population balance modeling and control in continuous bioreactors. J Process Control. 2004;14:775‐784.
[4] VollmerU, RaischJ. Control of batch crystallization a system inversion approach. Chem Eng Process Process Intensificat. 2006;45(10):874‐885. Particulate processes a special issue of chemical engineering and processing. doi:10.1016/j.cep.2006.01.012
[5] PalisS, KienleA. Discrepancy‐based control of particulate processes. J Proc Control. 2014;24:33‐46.
[6] Rocha‐CozatlE, MorenoJA, WouverAV. Application of a continuous‐discrete unknown input observer to estimation in phytoplanktonic cultures. IFAC Proc Vol. 2012;45(15):579‐584.
[7] KrämerD, KingR. On‐line monitoring of substrates and biomass using near‐infrared spectroscopy and model‐based state estimation for enzyme production by S. Cerevisiae. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05); 2016:609‐614.
[8] JeronoP, SchaumA, MeurerT. Observer design for the droop model with biased measurement: application to Haematococcus pluvialis. Proceedings of the 57th IEEE CDC; 2018:6295‐6300; Miami, FL.
[9] JeronoP, SchaumA, MeurerT. Moment‐based Kalman filter design for cell population balance models in batch fermentation processes. Proceedings of the IFAC AdChem 2021; 2021; Venice, Italy.
[10] GoffauxG, WouverAV, BernardO. Continuous ‐ discrete interval observers for monitoring microalgae cultures. Biotechnol Progr. 2009;25(3):667‐675.
[11] MazencF, DinhTN. Continuous‐discrete interval observers for systems with discrete measurements; 2013:787‐792.
[12] MazencF, DinhTN. Construction of interval observers for continuous‐time systems with discrete measurements. Automatica. 2014;50:2555‐2560. · Zbl 1301.93034
[13] HernandezH, AlvarezJ. Robust estimation of continuous nonlinear plants with discrete measurements. J Process Control. 2003;13:69‐89.
[14] JeronoP, SchaumA, MeurerT. Observability analysis and robust observer design for a continuous yeast culture. J Proc Control. 2021;104:62‐73.
[15] JiL, RawlingsJB. Application of MHE to large‐scale nonlinear processes with delayed lab measurements. Comput Chem Eng. 2015;80:63‐72.
[16] JiL, RawlingsJB, HuW, WynnA, DiehlM. Robust stability of moving horizon estimation under bounded disturbances. IEEE Trans Automat Contr. 2016;61(11):3509‐3514. · Zbl 1359.93064
[17] FeketaP, SchaumA, JeronoP, MeurerT. Impulsive observer design for a class of continuous biological reactors. Proceedings of the 58th IEEE Conference on Decision and Control (CDC); 2019; Nice, France.
[18] SontagED. Smooth stabilization implies coprime factorization. IEEE Trans Automat Contr. 1989;34(4):435‐443. · Zbl 0682.93045
[19] HespanhaJ, LiberzonD, TeelA. Lyapunov conditions for input‐to‐state stability of impulsive systems. Automatica. 2008;44(11):2735‐2744. · Zbl 1152.93050
[20] DashkovskiyS, MironchenkoA. Input‐to‐state stability of nonlinear impulsive systems. SIAM J Control Optim. 2013;51(3):1962‐1987. · Zbl 1271.34011
[21] FeketaP, BajcincaN. On robustness of impulsive stabilization. Automatica. 2019;104:48‐56. · Zbl 1415.93215
[22] HuW, ZhuQ, KarimiHR. Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems. IEEE Trans Automat Contr. 2019;64(12):5207‐5213. · Zbl 1482.93673
[23] HuW, ZhuQ. Moment exponential stability of stochastic nonlinear delay systems with impulse effects at random times. Int J Robust Nonlinear Control. 2019;29(12):3809‐3820. · Zbl 1426.93353
[24] HuW, ZhuQ, KarimiHR. On the p‐th moment integral input‐to‐state stability and input‐to‐state stability criteria for impulsive stochastic functional differential equations. Int J Robust Nonlinear Control. 2019;29(16):5609‐5620. · Zbl 1430.93182
[25] ZhuQ. Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event‐triggered feedback control. IEEE Trans Automat Contr. 2019;64(9):3764‐3771. · Zbl 1482.93694
[26] ZhuQ. p‐th moment exponential stability of impulsive stochastic functional differential equations with Markovian switching. J Franklin Inst. 2014;351(7):3965‐3986. · Zbl 1290.93205
[27] ZhangM, ZhuQ. New criteria of input‐to‐state stability for nonlinear switched stochastic delayed systems with asynchronous switching. Syst Control Lett. 2019;129:43‐50. · Zbl 1425.93245
[28] KarafyllisI, KrsticM. Input‐to‐State Stability for PDEs. Springer; 2018.
[29] SchaumA, JeronoP, MeurerT, MorenoJA. Moment‐based dissipative observer design for cell population balance models. Proceedings of the IFAC AdChem; 2021; Venice, Italy.
[30] ChristofidesPD, El‐FarraN, LiM, MhaskarP. Model‐based control of particulate processes. Chem Eng Sci. 2008;63(5):1156‐1172. Control of Particulate Processes. doi:10.1016/j.ces.2007.07.017
[31] MesbahA, HuesmanAEM, KramerHJM, deHofPMJV. A comparison of nonlinear observers for output feedback model‐based control of seeded batch crystallization processes. J Process Control. 2011;21(4):652‐666.
[32] FridmanE, BlighovskyA. Robust sampled‐data control of a class of semilinear parabolic systems. Automatica. 2012;48(5):826‐836. doi:10.1016/j.automatica.2012.02.006 · Zbl 1246.93076
[33] VilladsenJ. On the use of population balances. J Biotechnol. 1999;71:251‐253.
[34] JeronoP, SchaumA, MeurerT. Parameter identification of a yeast batch cell population balance model. Proceedings of the IFAC SysId; 2021; Padova, Italy.
[35] AtzoriF, JeronoP, SchaumA, BarattiR, TronciS, MeurerT. Identification of a cell population model for algae growth processes. Proceedings of the IFAC SysId; 2021; Padova, Italy.
[36] BeniichN, AbouzaidB, DochainD. On the existence and positivity of a mass structured cell population model. Appl Math Sci. 2018;12(19):921‐934.
[37] SontagED. On the input‐to‐state stability property. Eur J Control. 1995;1(1):24‐36. · Zbl 1177.93003
[38] DettmanJW. Mathematical Methods in Physics and Engineering. Dover Publications, McGraw‐Hill; 1988. · Zbl 0707.35001
[39] DashkovskiyS, FeketaP. Asymptotic properties of Zeno solutions. Nonlinear Anal Hybrid Syst. 2018;30:256‐265. · Zbl 1507.34017
[40] KhalilH. Nonlinear Systems. 2nd ed.Prentice‐Hall; 1996.
[41] Mancilla‐AguilarJL, HaimovichH, FeketaP. Uniform stability of nonlinear time‐varying impulsive systems with eventually uniformly bounded impulse frequency. Nonlinear Anal Hybrid Syst. 2020;38:100933. · Zbl 1478.93574
[42] ArisR. Introduction to the Analysis of Chemical Reactors. Prentice‐Hall; 1969.
[43] DochainD, PerrierM, YdstieB. Asymptotic observers for stirred tank reactors. Chem Eng Sci. 1992;47(15/16):4167‐4177.
[44] SchaumA, JeronoP. Observability analysis and observer design for a class of cell population balance models. IFAC‐PapersOnLine. 2019;52(2):189‐194.
[45] GelbA. Applied Optimal Estimation. MIT Press; 1978.
[46] SchaumA, MorenoJA, VargasA. Global observability and detectability analysis for a class of nonlinear models of biological processes with bad inputs. Proceedings of the 2nd IEEE International Conference on Electrical and Electronics Engineering, (ICEEE) and XI Conference on Electrical Engineering (CIE); 2005:343‐346.
[47] SchaumA, MorenoJA. Dynamical analysis of global observability properties for a class of biological reactors. Proceedings of the 10th IFAC International Symposium on Computer Applications in Biotechnology (CAB); 2007: 209‐214; Cancun, Mexico.
[48] GauthierJP, HammouriH, OthmanS. A simple observer for nonlinear systems: applications to bioreactors. IEEE Trans Automat Contr. 1992;37(6):875‐880. · Zbl 0775.93020
[49] SchaumA, AlvarezJ, LopezT. Saturated PI control for continuous bioreactors with Haldane kinetics. Chem Eng Sci. 2012;68(1):520‐529.
[50] Badillo‐HernandezU, Alvarez‐IcazaL, AlvarezJ. Model design of a class of moving‐bed tubular gasification reactors. Chem Eng Sci. 2013;101:674‐685.
[51] Franco‐de los ReyesHA, SchaumA, MeurerT, AlvarezJ. Stabilization of an unstable tubular reactor by nonlinear passive output feedback control. J Process Control. 2020;93:83‐96.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.