×

Approximation of quantum control correction scheme using deep neural networks. (English) Zbl 1504.81091

Summary: We study the functional relationship between quantum control pulses in the idealized case and the pulses in the presence of an unwanted drift. We show that a class of artificial neural networks called LSTM is able to model this functional relationship with high efficiency, and hence the correction scheme required to counterbalance the effect of the drift. Our solution allows studying the mapping from quantum control pulses to system dynamics and analysing its behaviour with respect to the local variations in the control profile.

MSC:

81Q93 Quantum control
68T05 Learning and adaptive systems in artificial intelligence
68T07 Artificial neural networks and deep learning
81P73 Computational stability and error-correcting codes for quantum computation and communication processing

References:

[1] Dowling, J., Milburn, G.: Quantum technology: the second quantum revolution. Phil. Trans. R. Soc. A 361, 1655 (2003) · doi:10.1098/rsta.2003.1227
[2] d’Alessandro, D.: Introduction to Quantum Control and Tynamics. CRC Press, Boca Raton (2007) · Zbl 1139.81001 · doi:10.1201/9781584888833
[3] Gough, J.E., Belavkin, V.P.: Quantum control and information processing. Quantum Inf. Process. 12, 1397 (2013) · Zbl 1267.81188 · doi:10.1007/s11128-012-0491-7
[4] Pawela, Ł., Puchała, Z.: Quantum control with spectral constraints. Quantum Inf. Process. 13, 227 (2014) · Zbl 1291.81168 · doi:10.1007/s11128-013-0644-3
[5] Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998) · doi:10.1103/PhysRevA.58.2733
[6] Ciliberto, C., Herbster, M., Ialongo, A.D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.: Quantum machine learning: a classical perspective. In: Proc. R. Soc. A, Vol. 474. The Royal Society, p. 20170551 (2018) · Zbl 1402.68154
[7] Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain: a review of recent progress Rep. Prog. Phys. 81, 074001 (2018). https://doi.org/10.1088/1361-6633/aab406 · doi:10.1088/1361-6633/aab406
[8] Ostaszewski, M., Miszczak, J., Sadowski, P.: Geometrical versus time-series representation of data in learning quantum control, arXiv:1803.05169 · Zbl 1348.81145
[9] van Nieuwenburg, E., Bairey, E., Refael, G.: Learning phase transitions from dynamics. Phys. Rev. B 98, 060301 (2018) · doi:10.1103/PhysRevB.98.060301
[10] Zahedinejad, E., Schirmer, S., Sanders, B.: Evolutionary algorithms for hard quantum control. Phys. Rev. A 90, 032310 (2014) · doi:10.1103/PhysRevA.90.032310
[11] August, M., Hernández-Lobato, J. M.: Taking gradients through experiments: LSTMs and memory proximal policy optimization for black-box quantum control. arXiv preprint arXiv:1802.04063 (2018)
[12] Las Heras, U., Alvarez-Rodriguez, U., Solano, E., Sanz, M.: Genetic algorithms for digital quantum simulations. Phys. Rev. Lett. 116, 230504 (2016) · doi:10.1103/PhysRevLett.116.230504
[13] Banchi, L., Pancotti, N., Bose, S.: Quantum gate learning in qubit networks: Toffoli gate without time-dependent control. NPJ Quantum Inf. 2, 16019 (2016). https://doi.org/10.1038/npjqi.2016.19 · doi:10.1038/npjqi.2016.19
[14] Sridharan, S., Gu, M., James, M.: Gate complexity using dynamic programming. Phys. Rev. A 78, 052327 (2008) · doi:10.1103/PhysRevA.78.052327
[15] Bukov, M., Day, A., Sels, D., Weinberg, P., Polkovnikov, A., Mehta, P.: Machine learning meets quantum state preparation. The Phase Diagram of Quantum Control (2017). arXiv:1705.00565
[16] Niu, M. Y., Boixo, S., Smelyanskiy, V., Neven, H.: Universal quantum control through deep reinforcement learning. arXiv preprint arXiv:1803.01857 (2018)
[17] August, M., Ni, X.: Using recurrent neural networks to optimize dynamical decoupling for quantum memory. Phys. Rev. A 95, 012335 (2017) · doi:10.1103/PhysRevA.95.012335
[18] Swaddle, M., Noakes, L., Smallbone, H., Salter, L., Wang, J.: Generating three-qubit quantum circuits with neural networks. Phys. Lett. A 381, 3391 (2017) · Zbl 1374.81034 · doi:10.1016/j.physleta.2017.08.043
[19] Fösel, T., Tighineanu, P., Weiss, T., Marquardt, F.: Reinforcement learning with neural networks for quantum feedback. arXiv preprint arXiv:1802.05267 (2018)
[20] Floether, F., de Fouquieres, P., Schirmer, S.: Robust quantum gates for open systems via optimal control: Markovian versus non-Markovian dynamics. New J. Phys. 14(7), 073023 (2012) · Zbl 1448.81209 · doi:10.1088/1367-2630/14/7/073023
[21] Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995) · Zbl 0868.68096
[22] Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016) · Zbl 1373.68009
[23] Koehn, P.: Statistical Machine Translation. Cambridge University Press, Cambridge (2009) · Zbl 1202.68446 · doi:10.1017/CBO9780511815829
[24] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). arXiv:1409.0473
[25] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735 (1997) · doi:10.1162/neco.1997.9.8.1735
[26] Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673-2681 (1997) · doi:10.1109/78.650093
[27] Graves, A., Fernández, S., Schmidhuber, J.: Bidirectional LSTM networks for improved phoneme classification and recognition. In: International Conference on Artificial Neural Networks organization. Springer, Berlin, pp. 799-804 (2005)
[28] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: In: 12th USENIX Symposium on Operating Systems Design and Implementation, Vol. 16, pp. 265-283 (2016)
[29] TensorFlow: An open-source machine learning framework for everyone. https://www.tensorflow.org/
[30] Mezzadri, F.: How to generate random matrices from the classical compact groups. Not. AMS 54, 592 (2007) · Zbl 1156.22004
[31] Miszczak, J.: Generating and using truly random quantum states in Mathematica. Comput. Phys. Commun. 183, 118 (2012) · Zbl 1263.81116 · doi:10.1016/j.cpc.2011.08.002
[32] Banchi, L., Burgarth, D., Kastoryano, M.J.: Driven quantum dynamics: will it blend? Phys. Rev. X 7, 041015 (2017)
[33] Approximation of quantum control using lstm. https://github.com/ZKSI/qcontrol_lstm_approx
[34] QuTiP—Quantum Toolbox in Python. http://qutip.org/ (2012)
[35] Johansson, J., Nation, P., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760 (2012) · doi:10.1016/j.cpc.2012.02.021
[36] Johansson, J., Nation, P., Nori, F.: QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234 (2013) · doi:10.1016/j.cpc.2012.11.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.