×

Quantum control with spectral constraints. (English) Zbl 1291.81168

Summary: Various constraints concerning control fields can be imposed in the realistic implementations of quantum control systems. One of the most important is the restriction on the frequency spectrum of acceptable control parameters. It is important to consider the limitations of experimental equipment when trying to find appropriate control parameters. Therefore, in this paper, we present a general method of obtaining a piecewise-constant controls, which are robust with respect to spectral constraints. We consider here a Heisenberg spin chain; however, the method can be applied to a system with more general interactions. To model experimental restrictions, we apply an ideal low-pass filter to numerically obtained control pulses. The usage of the proposed method has negligible impact on the control quality as opposed to the standard approach, which does not take into account spectral limitations.

MSC:

81Q93 Quantum control

References:

[1] Albertini, F., D’Alessandro, D.: The Lie algebra structure and controllability of spin systems. Linear Algebra Its Appl. 350, 213 (2002). ISSN 0024-3795, http://www.sciencedirect.com/science/article/pii/S0024379502002902 · Zbl 1146.93309
[2] d’Alessandro, D.: Introduction to Quantum Control and Dynamics. Chapman & Hall, London (2008) · Zbl 1139.81001
[3] Elliott, D.: Bilinear Control Systems: Matrices in Action. Springer, Berlin (2009). ISBN 1402096127 · Zbl 1171.93003
[4] Burgarth, D., Giovannetti, V.: Full control by locally induced relaxation. Phys. Rev. Lett. 99, 100501 (2007). doi:10.1103/PhysRevLett.99.100501 · Zbl 1166.81307
[5] Burgarth, D., Bose, S., Bruder, C., Giovannetti, V.: Local controllability of quantum networks. Phys. Rev. A 79, 60305 (2009). ISSN 1094-1622, doi:10.1103/PhysRevA.79.060305
[6] Puchała, Z.: Local controllability of quantum systems. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0391-x · Zbl 1263.81214
[7] Montangero, S., Calarco, T., Fazio, R.: Robust optimal quantum gates for Josephson charge qubits. Phys. Rev. Lett. 99, 170501 (2007). doi:10.1103/PhysRevLett.99.170501
[8] Fisher, R., Helmer, F., Glaser, S.J., Marquardt, F., Schulte-Herbrüggen, T.: Optimal control of circuit quantum electrodynamics in one and two dimensions. Phys. Rev. B 81, 085328 (2010). doi:10.1103/PhysRevB.81.085328
[9] Chaudhury, S., Merkel, S., Herr, T., Silberfarb, A., Deutsch, I., Jessen, P.: Quantum control of the hyperfine spin of a Cs atom ensemble. Phys. Rev. Lett. 99, 163002 (2007). doi:10.1103/PhysRevLett.99.163002
[10] Heule, R., Bruder, C., Burgarth, D., Stojanović, V. M.: Local quantum control of Heisenberg spin chains. Phys. Rev. A 82, 052333 (2010). doi:10.1103/PhysRevA.82.052333
[11] Heule, R., Bruder, C., Burgarth, D., Stojanović, V.M.: Controlling qubit arrays with anisotropic XXZ Heisenberg interaction by acting on a single qubit. Eur. Phys. J. D 63, 41 (2011), ISSN 1434-6060, 1434-6079, http://www.springerlink.com/content/b4rr1wg3400442lv/
[12] Miszczak, J., Gawron, P., Puchała, Z.: Qubit flip game on a Heisenberg spin chain. Quantum Inf. Process. (2012). doi:10.1007/s11128-011-0322-2 · Zbl 1263.81086
[13] Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T., Glaser, S.J.: Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296 (2005), ISSN 1090-7807, http://www.sciencedirect.com/science/article/pii/S1090780704003696
[14] Werschnik, J., Gross, E.: Quantum optimal control theory. J. Phys. B: Atom. Molecul. Opt. Phys. 40, R175 (2007) · doi:10.1088/0953-4075/40/18/R01
[15] Machnes, S., Sander, U., Glaser, S.J., de Fouquières, P., Gruslys, A., Schirmer, S., Schulte-Herbrüggen, T.: Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework. Phys. Rev. A 84, 022305 (2011). doi:10.1103/PhysRevA.84.022305
[16] Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in FORTRAN 77: Volume 1 of Fortran Numerical Recipes: The Art of Scientific Computing, vol. 1. Cambridge University Press, Cambridge (1992) · Zbl 0778.65002
[17] Burgarth, D. Maruyama, K., Murphy, M., Montangero, S., Calarco, T., Nori, F., Plenio, M.B.: arXiv:0905.3373 (2009), Phys. Rev. A 81, 040303(R) (2010), http://arxiv.org/abs/0905.3373
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.