×

A hunter-gatherer-farmer population model: new conditional symmetries and exact solutions with biological interpretation. (English) Zbl 1504.35021

Summary: New \(Q\)-conditional (nonclassical) symmetries and exact solutions of the hunter-gatherer-farmer population model proposed by K. Aoki et al. [Theor. Popul. Biol. 50, No. 1, 1–17 (1996; Zbl 0856.92026)] are constructed. The main method used for the aforementioned purposes is an extension of the nonclassical method for system of partial differential equations. An analysis of properties of the exact solutions obtained and their biological interpretation are carried out. New results are compared with those derived in recent studies devoted to the same model.

MSC:

35B06 Symmetries, invariants, etc. in context of PDEs
35C05 Solutions to PDEs in closed form
35K40 Second-order parabolic systems
35K57 Reaction-diffusion equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences

Citations:

Zbl 0856.92026

Software:

ReLie

References:

[1] Aoki, K., A three-population wave-of-advance model for the European early Neolithic, PLoS ONE, 155 (2020) · doi:10.1371/journal.pone.0233184
[2] Aoki, K.; Shida, M.; Shigesada, N., Travelling wave solutions for the spread of farmers into a region occupied by hunter-gatherers, Theor. Popul. Biol., 50, 1-17 (1996) · Zbl 0856.92026 · doi:10.1006/tpbi.1996.0020
[3] Arrigo, D. J.; Ekrut, D. A.; Fliss, J. R.; Long, l., Nonclassical symmetries of a class of Burgers’ systems, J. Math. Anal. Appl., 371, 813-820 (2010) · Zbl 1205.35012 · doi:10.1016/j.jmaa.2010.06.026
[4] Barannyk, T., Symmetry and exact solutions for systems of nonlinear reaction-diffusion equations (in Ukrainian), Proc. Inst. Math. Nat. Acad. Sci. Ukr., 43, 80-85 (2002) · Zbl 1073.35508
[5] Barannyk, T., Nonclassical symmetries of a system of nonlinear reaction-diffusion equations, J. Math. Sci., 238, 207-214 (2019) · Zbl 1420.35022 · doi:10.1007/s10958-019-04229-6
[6] Bluman, G. W.; Anco, S. C., Symmetry and Integration Methods for Differential Equations (2002), New York: Springer, New York · Zbl 1013.34004
[7] Bluman, G. W.; Cheviakov, A. F.; Anco, S. C., Applications of Symmetry Methods to Partial Differential Equations (2010), New York: Springer, New York · Zbl 1223.35001 · doi:10.1007/978-0-387-68028-6
[8] Bluman, G. W.; Cole, J. D., The general similarity solution of the heat equation, J. Math. Mech., 18, 1025-1042 (1969) · Zbl 0187.03502
[9] Cherniha, R., Conditional symmetries for systems of PDEs: new definition and their application for reaction-diffusion systems, J. Phys. A, Math. Theor., 43 (2010) · Zbl 1206.35021 · doi:10.1088/1751-8113/43/40/405207
[10] Cherniha, R.; Davydovych, V., Lie and conditional symmetries of the three-component diffusive Lotka-Volterra system, J. Phys. A, Math. Theor., 46 (2013) · Zbl 1270.35029 · doi:10.1088/1751-8113/46/18/185204
[11] Cherniha, R.; Davydovych, V., Nonlinear Reaction-Diffusion Systems — Conditional Symmetry, Exact Solutions and Their Applications in Biology (2017), Cham: Springer, Cham · Zbl 1391.35003 · doi:10.1201/9781315154848
[12] Cherniha, R.; Davydovych, V., A hunter-gatherer-farmer population model: Lie symmetries, exact solutions and their interpretation, Eur. J. Appl. Math., 30, 338-357 (2019) · Zbl 1430.91064 · doi:10.1017/S0956792518000104
[13] Cherniha, R.; Davydovych, V., New conditional symmetries and exact solutions of the diffusive two-component Lotka-Volterra system, Mathematics, 9, 1984 (2021) · doi:10.3390/math9161984
[14] Cherniha, R.; Davydovych, V., Conditional symmetries and exact solutions of a nonlinear three-component reaction-diffusion model, Eur. J. Appl. Math., 32, 280-300 (2021) · Zbl 1504.35020 · doi:10.1017/S0956792520000121
[15] Cherniha, R.; Dutka, V., A diffusive Lotka-Volterra system: Lie symmetries, exact and numerical solutions, Ukr. Math. J., 56, 1665-1675 (2004) · Zbl 1150.35446 · doi:10.1007/s11253-005-0142-6
[16] Cherniha, R.; King, J. R., Lie and conditional symmetries of a class of nonlinear (1+2)-dimensional boundary value problems, Symmetry, 7, 1410-1435 (2015) · Zbl 1375.35019 · doi:10.3390/sym7031410
[17] Cherniha, R.; Serov, M., Nonlinear systems of the Burgers-type equations: Lie and Q-conditional symmetries, ansatze and solutions, J. Math. Anal. Appl., 282, 305-328 (2003) · Zbl 1073.35192 · doi:10.1016/S0022-247X(03)00155-0
[18] Cherniha, R.; Serov, M.; Pliukhin, O., Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications (2018), New York: Chapman and Hall/CRC, New York · Zbl 1403.35002
[19] Cole, J. D., On a quasi-linear parabolic equation occurring in aerodynamics, Q. Appl. Math., 9, 225-236 (1951) · Zbl 0043.09902 · doi:10.1090/qam/42889
[20] Elias, J.; Mimura, M.; Mori, R., Asymptotic behavior of solutions of Aoki-Shida-Shigesada model in bounded domains, Discrete Contin. Dyn. Syst., Ser. B, 26, 1917-1930 (2021) · Zbl 1466.35034 · doi:10.3934/dcdsb.2020082
[21] Fu, S. C.; Mimura, M.; Tsai, J. C., Traveling waves for a three-component reaction-diffusion model of farmers and hunter-gatherers in the Neolithic transition, J. Math. Biol., 82, 1-35 (2021) · Zbl 1466.92223 · doi:10.1007/s00285-021-01585-3
[22] Fushchych, W. I.; Shtelen, W. M.; Serov, M. I., Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics (1993), Dordrecht: Kluwer, Dordrecht · Zbl 0838.58043 · doi:10.1007/978-94-017-3198-0
[23] Hashemi, M. S.; Nucci, M. C., Nonclassical symmetries for a class of reaction-diffusion equations: the method of heir-equations, J. Nonlinear Math. Phys., 20, 44-60 (2013) · Zbl 1420.35127 · doi:10.1080/14029251.2013.792469
[24] Hopf, E., The partial differential equation \(u_t+\mathit{uu}_x=\mu u_{\mathit{xx}} \), Commun. Pure Appl. Math., 3, 201-230 (1950) · Zbl 0039.10403 · doi:10.1002/cpa.3160030302
[25] Kamke, E., Differentialgleichungen. Lösungmethoden and Lösungen (1959), Leipzig: Akademische Verlagsgesellschaft, Leipzig
[26] Lie, S., Über die Integration durch Bestimmte Integrale von einer Klasse Lineare Partiellen Differentialgleichungen, Arch. Math., 6, 328-368 (1881) · JFM 13.0298.01
[27] Lie, S., Algemeine Untersuchungen über Differentialgleichungen, die eine continuirliche endliche Gruppe gestatten, Math. Ann., 25, 71-151 (1885) · JFM 17.0339.01 · doi:10.1007/BF01446421
[28] Murata, S., Non-classical symmetry and Riemann invariants, Int. J. Non-Linear Mech., 41, 242-246 (2006) · Zbl 1160.76324 · doi:10.1016/j.ijnonlinmec.2005.07.005
[29] Nucci, M. C., Iterations of the non-classical symmetries method and conditional Lie-Bäcklund symmetries, J. Phys. A, Math. Gen., 29, 8117-8122 (1996) · Zbl 0898.58056 · doi:10.1088/0305-4470/29/24/032
[30] Oliveri, F., ReLie: a reduce program for Lie group analysis of differential equations, Symmetry, 13, 1826 (2021) · doi:10.3390/sym13101826
[31] Saccomandi, G., A personal overview on the reduction methods for partial differential equations, Note Mat., 23, 217-248 (2005) · Zbl 1195.35020
[32] Torrisi, M.; Tracina, R., Exact solutions of a reaction-diffusion system for Proteus mirabilis bacterial colonies, Nonlinear Anal., Real World Appl., 12, 1865-1874 (2011) · Zbl 1213.35259 · doi:10.1016/j.nonrwa.2010.12.004
[33] Xiao, D.; Mori, R., Spreading properties of a three-component reaction-diffusion model for the population of farmers and hunter-gatherers, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 38, 911-951 (2021) · Zbl 1466.92162 · doi:10.1016/j.anihpc.2020.09.007
[34] Zhdanov, R. Z.; Lahno, V. I., Conditional symmetry of a porous medium equation, Physica D, 122, 178-186 (1998) · Zbl 0952.76087 · doi:10.1016/S0167-2789(98)00191-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.