×

A projection-like method for quasimonotone variational inequalities without Lipschitz continuity. (English) Zbl 1503.90145

Summary: For most projection methods, the operator of a variational inequality problem is assumed to be monotone (or pseudomonotone) and Lipschitz continuous. In this paper, we present a projection-like method to solve quasimonotone variational inequality problems without Lipschitz continuity. Under some mild assumptions, we prove that the sequence generated by the proposed algorithm converges to a solution. Numerical experiments are provided to show the effectiveness of the method.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
Full Text: DOI

References:

[1] Korpelevich, GM, The extragradient method for finding saddle points and other problems, Ekonomika i Mat Metody., 12, 747-756 (1976) · Zbl 0342.90044
[2] Censor, Y.; Gibali, A.; Reich, S., The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148, 318-335 (2011) · Zbl 1229.58018 · doi:10.1007/s10957-010-9757-3
[3] Censor, Y.; Gibali, A.; Reich, S., Strong convergence of subgradient extragradient methods for the variational inequality problems in Hilbert space, Optim., 26, 827-845 (2011) · Zbl 1232.58008
[4] Censor, Y.; Gibali, A.; Reich, S., Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space, Optim., 61, 1119-1132 (2012) · Zbl 1260.65056 · doi:10.1080/02331934.2010.539689
[5] Gibali, A., A new Bregman projection method for solving variational inequalities in Hilbert spaces, Pure Appl. Funct. Anal., 3, 403-415 (2018) · Zbl 1474.47125
[6] Hieu, DV; Thong, DV, New extragradient-like algorithms for strongly pseudomonotone variational inequalities, J. Glob. Optim., 70, 385-399 (2018) · Zbl 1384.65041 · doi:10.1007/s10898-017-0564-3
[7] Malitsky, YV; Semenov, VV, An extragradient algorithm for monotone variational inequalities, Cybern. Syst. Anal., 50, 271-277 (2014) · Zbl 1311.49024 · doi:10.1007/s10559-014-9614-8
[8] Rockfellar, RT, Monotone operators and proximal point algorithm, SIAM J. Control. Optim., 14, 877-898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[9] He, YR, A new double projection algorithm for variational inequalities, J. Comput. Appl. Math., 185, 166-173 (2006) · Zbl 1081.65066 · doi:10.1016/j.cam.2005.01.031
[10] Zheng, L.; Gou, QM, The subgradient double projection algorithm for solving variational inequalities, Acta Math. Appl. Sin., 37, 968-975 (2014) · Zbl 1324.90177
[11] Han, DR; Lo, HK, Two new self-adaptive projection methods for variational inequality problems, Comput. Math. Appl., 43, 1529-1537 (2002) · Zbl 1012.65064 · doi:10.1016/S0898-1221(02)00116-5
[12] Langenberg, N., An interior proximal method for a class of quasimonotone variational inequalities, J. Optim. Theory Appl., 155, 902-922 (2012) · Zbl 1257.90104 · doi:10.1007/s10957-012-0111-9
[13] Brito, AS; Da Cruz Neto, JX; Lopes, JO; Oliveira, PR, Interior proximal method for quasiconvex programming problems and variational inequalities with linear constraints, J. Optim. Theory Appl., 154, 217-234 (2012) · Zbl 1273.90238 · doi:10.1007/s10957-012-0002-0
[14] Yekini, S.; Qiao-Li, D.; Dan, J., Single projection method for pseudo-monotone variational inequality in Hilbert spaces, Optim., 68, 1385-409 (2019) · Zbl 1431.49009
[15] Morrey, CB, Quasiconvexity and lower semicontinuity of multiple intergrals, Pacific J. Math., 2, 25-53 (1952) · Zbl 0046.10803 · doi:10.2140/pjm.1952.2.25
[16] Morrey, CB, Multiple Integrals in the Calculus of Variations (1952), Berlin: Springer, Berlin · Zbl 1213.49002
[17] Ball, JM, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 86, 337-403 (1971) · Zbl 0368.73040
[18] Landes, R., Quasiminotone versus pseudomonotone, Proc. R. Soc. Edinburgh Sect. A Math., 126, 4, 705-717 (1996) · Zbl 0863.35033 · doi:10.1017/S0308210500023015
[19] Danilidis, A., Hadjisavvas: characterization of nonsmooth semistrictly quasiconvex and Strictly quasiconvex functions, J. Optim. Theory App., 102, 3, 525-536 (1999) · Zbl 1010.49013 · doi:10.1023/A:1022693822102
[20] Hadjisavvas, N.; Schaible, S., Quasimonotone variational inequalities in Banach spaces, J. Optim. Theory Appl., 90, 1, 95-111 (1996) · Zbl 0904.49005 · doi:10.1007/BF02192248
[21] Ye, ML; He, YR, A double projection method for solving variational inequalities without monotonicity, Comput. Optim. Appl., 60, 141-150 (2015) · Zbl 1308.90184 · doi:10.1007/s10589-014-9659-7
[22] Hu, X.; Wang, J., Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network, IEEE Trans. Neural Netw., 17, 1487-1499 (2006) · doi:10.1109/TNN.2006.879774
[23] Sun, DF, A new step-size skill for solving a class of nonlinear equations, J. Comput. Math., 13, 357-368 (1995) · Zbl 0854.65048
[24] Liu, HW; Yang, J., Weak convergence of iterative methods for solving quasimonotone variational inequalities, Comput. Optim. Appl., 77, 491-508 (2020) · Zbl 07342388 · doi:10.1007/s10589-020-00217-8
[25] Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequality and Complementarity Problems, Volume I and II. Springer Series in Operations Research, (2003) · Zbl 1062.90002
[26] Zhu, T.; Yu, ZG, A simple proof for some important properties of the projection mapping, Math. Inequal. Appl., 7, 453-456 (2004) · Zbl 1086.49007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.