×

Nonstationary iterated Tikhonov regularization: convergence analysis via Hölder stability. (English) Zbl 1503.35288

Summary: In this paper, we study the nonstationary iterated Tikhonov regularization method (NITRM) proposed by Q. Jin and M. Zhong [Numer. Math. 127, No. 3, 485–513 (2014; Zbl 1297.65062)] to solve the inverse problems, where the inverse mapping fulfills a Hölder stability estimate. The iterates of NITRM are defined through certain minimization problems in the settings of Banach spaces. In order to study the various important characteristics of the sought solution, we consider the non-smooth uniformly convex penalty terms in the minimization problems. In the case of noisy data, we terminate the method via a discrepancy principle and show the strong convergence of the iterates as well as the convergence with respect to the Bregman distance. For noise free data, we show the convergence of the iterates to the sought solution. Additionally, we derive the convergence rates of NITRM method for both the noisy and noise free data that are missing from the literature. In order to derive the convergence rates, we solely utilize the Hölder stability of the inverse mapping that opposes the standard analysis which requires a source condition as well as a nonlinearity estimate to be satisfied by the inverse mapping. Finally, we discuss three numerical examples to show the validity of our results.

MSC:

35R30 Inverse problems for PDEs
47A52 Linear operators and ill-posed problems, regularization
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization

Citations:

Zbl 1297.65062
Full Text: DOI

References:

[1] Alberti, G. S.; Santacesaria, M., Calderón’s inverse problem with a finite number of measurements, Forum Math. Sigma, 7, e35 (2019) · Zbl 1426.35235 · doi:10.1017/fms.2019.31
[2] Alberti, G. S.; Santacesaria, M., Calderón’s inverse problem with a finite number of measurements: II. Independent data, Appl. Anal., 101, 3636-3654 (2022) · Zbl 1494.35179 · doi:10.1080/00036811.2020.1745192
[3] Alberti, G. S.; Santacesaria, M., Infinite-dimensional inverse problems with finite measurements, Arch. Ration. Mech. Anal., 243, 1-31 (2022) · Zbl 1481.35390 · doi:10.1007/s00205-021-01718-4
[4] Alessandrini, G.; Vessella, S., Lipschitz stability for the inverse conductivity problem, Adv. Appl. Math., 35, 207-241 (2005) · Zbl 1095.35058 · doi:10.1016/j.aam.2004.12.002
[5] Bachmayr, M.; Burger, M., Iterative total variation schemes for nonlinear inverse problems, Inverse Problems, 25 (2009) · Zbl 1188.49028 · doi:10.1088/0266-5611/25/10/105004
[6] Beretta, E.; de Hoop, M. V.; Qiu, L.; Scherzer, O., Inverse boundary value problem for the Helmholtz equation with multi-frequency data, vol 1, 185-203 (2013), Purdue University
[7] Cioranescu, I., Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems (1990), Dordrecht: Kluwer, Dordrecht · Zbl 0712.47043
[8] de Hoop, M. V.; Qiu, L.; Scherzer, O., Local analysis of inverse problems: Hölder stability and iterative reconstruction, Inverse Problems, 28 (2012) · Zbl 1319.47049 · doi:10.1088/0266-5611/28/4/045001
[9] de Hoop, M. V.; Qiu, L.; Scherzer, O., An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints, Numer. Math., 129, 127-148 (2015) · Zbl 1317.65133 · doi:10.1007/s00211-014-0629-x
[10] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems (2000), Berlin: Springer, Berlin
[11] Engl, H. W.; Kunisch, K.; Neubauer, A., Convergence rates for Tikhonov regularisation of non-linear ill-posed problems, Inverse Problems, 5, 523-540 (1989) · Zbl 0695.65037 · doi:10.1088/0266-5611/5/4/007
[12] Garde, H.; Hyvönen, N., Series reversion in Calderón’s problem, Math. Comp., 91, 1925-1953 (2022) · Zbl 1491.35456 · doi:10.1090/mcom/3729
[13] Garde, H.; Hyvönen, N., Linearised Calderón problem: reconstruction and Lipschitz stability for infinite-dimensional spaces of unbounded perturbations (2022)
[14] Hanke, M.; Groetsch, C. W., Nonstationary iterated Tikhonov regularization, J. Optim. Theory Appl., 98, 37-53 (1998) · Zbl 0910.47005 · doi:10.1023/a:1022680629327
[15] Hanke, M.; Neubauer, A.; Scherzer, O., A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72, 21-37 (1995) · Zbl 0840.65049 · doi:10.1007/s002110050158
[16] Jin, Q., A general convergence analysis of some Newton-type methods for nonlinear inverse problems, SIAM J. Numer. Anal., 49, 549-573 (2011) · Zbl 1225.65061 · doi:10.1137/100804231
[17] Jin, Q., On a class of frozen regularized Gauss-Newton methods for nonlinear inverse problems, Math. Comp., 79, 2191-2211 (2010) · Zbl 1208.65073 · doi:10.1090/s0025-5718-10-02359-8
[18] Jin, Q.; Stals, L., Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces, Inverse Problems, 28 (2012) · Zbl 1253.47011 · doi:10.1088/0266-5611/28/10/104011
[19] Jin, Q.; Zhong, M., Nonstationary iterated Tikhonov regularization in Banach spaces with uniformly convex penalty terms, Numer. Math., 127, 485-513 (2014) · Zbl 1297.65062 · doi:10.1007/s00211-013-0594-9
[20] Kaltenbacher, B.; Neubauer, A.; Scherzer, O., Iterative Regularization Methods for Nonlinear Ill-Posed Problems (2008), Berlin: de Gruyter & Co, Berlin · Zbl 1145.65037
[21] Mittal, G.; Giri, A. K., Iteratively regularized Landweber iteration method: convergence analysis via Hölder stability, Appl. Math. Comput., 392 (2021) · Zbl 1474.65158 · doi:10.1016/j.amc.2020.125744
[22] Mittal, G.; Giri, A. K., Convergence rates for iteratively regularized Gauss-Newton method subject to stability constraints, J. Comput. Appl. Math., 400 (2022) · Zbl 1503.65121 · doi:10.1016/j.cam.2021.113744
[23] Mittal, G.; Giri, A. K., Novel multi-level projected iteration to solve inverse problems with nearly optimal accuracy, J. Optim. Theory Appl., 194, 643-680 (2022) · Zbl 1492.65155 · doi:10.1007/s10957-022-02044-9
[24] Osher, S.; Burger, M.; Goldfarb, D.; Xu, J.; Yin, W., An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul., 4, 460-489 (2005) · Zbl 1090.94003 · doi:10.1137/040605412
[25] Scherzer, O.; Grasmair, M.; Grossauer, H.; Haltmeier, M.; Lenzen, F., Variational Methods in Imaging. Applied Mathematical Sciences vol 167 (2009), Berlin: Springer, Berlin · Zbl 1177.68245
[26] Schuster, T.; Kaltenbacher, B.; Hofmann, B.; Kazimierski, K. S., Regularization Methods in Banach Spaces (2012), Berlin: de Gruyter & Co, Berlin · Zbl 1259.65087
[27] Schöpfer, F.; Louis, A.; Schuster, C., Nonlinear iterative methods for linear ill-posed problems in Banach spaces, Inverse Problems, 22, 311-329 (2006) · Zbl 1088.65052 · doi:10.1088/0266-5611/22/1/017
[28] Wang, Y.; Li, L.; Wang, W., A convergence analysis of an inexact Newton-Landweber iteration method for nonlinear problem, Appl. Anal., 97, 1106-1116 (2018) · Zbl 1398.65357 · doi:10.1080/00036811.2017.1300793
[29] Zalinscu, C., Convex Analysis in General Vector Spaces (2002), Singapore: World Scientific, Singapore · Zbl 1023.46003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.