×

Feedback controllability for blowup points of the heat equation. (English. French summary) Zbl 1503.35089

Summary: This paper is concerned with a controllability problem of blowup points for the heat equation. It can be described as follows: In the absence of control, the solution to the linear heat equation globally exists in a bounded domain \(\Omega \). We wonder whether for a given time \(T>0\) and a point \(a\) in this domain, we can find a feedback control, acting on a given internal subset \(\omega\) of this domain, such that the corresponding solution to the heat equation blows up at time \(T\) and holds \(a\) as a unique blowup point. In this paper, we positively answer the question, when \(a\in\omega\). On the contrary, when \(a\in\Omega\smallsetminus\overline{\omega}\), we show this is not possible, for any open-loop or feedback control which guarantees that the solution is \(L^\infty(\Omega)\) whenever it exists.

MSC:

35K20 Initial-boundary value problems for second-order parabolic equations
35B44 Blow-up in context of PDEs
93B05 Controllability
93B52 Feedback control

References:

[1] Abdelhedi, Bouthaina; Zaag, Hatem, Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term, Discrete Contin. Dyn. Syst., Ser. S, 14, 8, 2607-2623 (2021) · Zbl 1479.35136
[2] Bárcena-Petisco, Jon Asier, Null controllability of the heat equation in pseudo-cylinders by an internal control, ESAIM Control Optim. Calc. Var., 26, Article 122 pp. (2020) · Zbl 1459.35227
[3] Biccari, Umberto; Warma, Mahamadi; Zuazua, Enrique, Controllability of the one-dimensional fractional heat equation under positivity constraints, Commun. Pure Appl. Anal., 19, 4, 1949-1978 (2020) · Zbl 1446.93012
[4] Bressan, Alberto, On the asymptotic shape of blow-up, Indiana Univ. Math. J., 39, 4, 947-960 (1990) · Zbl 0705.35014
[5] Bressan, Alberto, Stable blow-up patterns, J. Differ. Equ., 98, 1, 57-75 (1992) · Zbl 0770.35010
[6] Bricmont, J.; Kupiainen, A., Universality in blow-up for nonlinear heat equations, Nonlinearity, 7, 2, 539-575 (1994) · Zbl 0857.35018
[7] Chen, S.; Lasiecka, I., Feedback exact null controllability for unbounded control problems in Hilbert space, J. Optim. Theory Appl., 74, 2, 191-219 (1992) · Zbl 0794.93010
[8] Coron, Jean-Michel; Nguyen, Hoai-Minh, Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach, Arch. Ration. Mech. Anal., 225, 3, 993-1023 (2017) · Zbl 1417.93067
[9] Doubova, A.; Fernández-Cara, E.; González-Burgos, M.; Zuazua, E., On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41, 3, 798-819 (2002) · Zbl 1038.93041
[10] Fernández-Cara, Enrique; Zuazua, Enrique, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 17, 5, 583-616 (2000) · Zbl 0970.93023
[11] Filippas, Stathis; Kohn, Robert V., Refined asymptotics for the blow-up of \(u_t - \operatorname{\Delta} u = u^p\), Commun. Pure Appl. Math., 45, 7, 821-869 (1992) · Zbl 0784.35010
[12] Filippas, Stathis; Liu, Wenxiong, On the blowup of multidimensional semilinear heat equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 10, 3, 313-344 (1993) · Zbl 0815.35039
[13] Fu, Xiaoyu; Lü, Qi; Zhang, Xu, Carleman Estimates for Second Order Partial Differential Operators and Applications. A Unified Approach, SpringerBriefs Math. (2019), Springer: Springer Cham · Zbl 1445.35006
[14] Geshkovski, Borjan; Zuazua, Enrique, Controllability of one-dimensional viscous free boundary flows, SIAM J. Control Optim., 59, 3, 1830-1850 (2021) · Zbl 1467.93034
[15] Giga, Yoshikazu; Kohn, Robert V., Asymptotically self-similar blow-up of semilinear heat equations, Commun. Pure Appl. Math., 38, 297-319 (1985) · Zbl 0585.35051
[16] Giga, Yoshikazu; Kohn, Robert V., Nondegeneracy of blow up for semilinear heat equations, Commun. Pure Appl. Math., 42, 6, 845-884 (1989) · Zbl 0703.35020
[17] Guo, Jong-Sheng; Hu, Bei, Blowup rate estimates for the heat equation with a nonlinear gradient source term, Discrete Contin. Dyn. Syst., 20, 4, 927-937 (2008) · Zbl 1159.35009
[18] Han, Shuo; Liu, Hanbing; Lin, Ping, Null controllability and global blowup controllability of ordinary differential equations with feedback controls, J. Math. Anal. Appl., 493, 1, Article 124510 pp. (2021) · Zbl 1451.93024
[19] Herrero, M. A.; Velázquez, J. J.L., Flat blow-up in one-dimensional semilinear heat equations, Differ. Integral Equ., 5, 5, 973-997 (1992) · Zbl 0767.35036
[20] Herrero, M. A.; Velázquez, J. J.L., Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 10, 2, 131-189 (1993) · Zbl 0813.35007
[21] Hu, Bei; Yin, Hong-Ming, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Trans. Am. Math. Soc., 346, 1, 117-135 (1994) · Zbl 0823.35020
[22] Kassab, K., Null controllability of semi-linear fourth order parabolic equations, J. Math. Pures Appl., 9, 136, 279-312 (2020) · Zbl 1439.35216
[23] Khenissy, S.; Rébaï, Y.; Zaag, H., Continuity of the blow-up profile with respect to initial data and to the blow-up point for a semilinear heat equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 28, 1, 1-26 (2011) · Zbl 1215.35090
[24] Le Balc’h, Kévin, Global null-controllability and nonnegative-controllability of slightly superlinear heat equations, J. Math. Pures Appl., 9, 135, 103-139 (2020) · Zbl 1436.93065
[25] Li, Hongheng; Lü, Qi; Zhang, Xu, Recent progress on controllability/observability for systems governed by partial differential equations, J. Syst. Sci. Complex., 23, 3, 527-545 (2010) · Zbl 1201.93022
[26] Ping, Lin, Global blowup controllability of heat equation with feedback control, Commun. Contemp. Math., 20, 5, Article 1750062 pp. (2018) · Zbl 1393.35078
[27] Mahmoudi, Fethi; Nouaili, Nejla; Zaag, Hatem, Construction of a stable periodic solution to a semilinear heat equation with a prescribed profile, Nonlinear Anal., Theory Methods Appl., Ser. A, 131, 300-324 (2016) · Zbl 1334.35145
[28] Merle, Frank; Zaag, Hatem, Stability of the blow-up profile for equations of the type \(u_t = \operatorname{\Delta} u + | u |^{p - 1} u\), Duke Math. J., 86, 1, 143-195 (1997) · Zbl 0872.35049
[29] Nguyen, Van Tien; Zaag, Hatem, Finite degrees of freedom for the refined blow-up profile of the semilinear heat equation, Ann. Sci. Éc. Norm. Supér. (4), 50, 5, 1241-1282 (2017) · Zbl 1395.35125
[30] Nouaili, Nejla; Zaag, Hatem, Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation, Commun. Partial Differ. Equ., 40, 7, 1197-1217 (2015) · Zbl 1335.35126
[31] Porretta, Alessio; Zuazua, Enrique, Null controllability of viscous Hamilton-Jacobi equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 29, 3, 301-333 (2012) · Zbl 1244.93027
[32] Qin, Shulin; Wang, Gengsheng; Yu, Huaiqiang, Switching properties of time optimal controls for systems of heat equations coupled by constant matrices, SIAM J. Control Optim., 59, 2, 1420-1442 (2021) · Zbl 1461.93221
[33] Sîrbu, Mihai, A Riccati equation approach to the null controllability of linear systems, Commun. Appl. Anal., 6, 2, 163-177 (2002) · Zbl 1085.93502
[34] Smoller, Joel, Shock Waves and Reaction-Diffusion Equations, Grundlehren Math. Wiss., vol. 258 (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0807.35002
[35] Szegö, Gabor, Orthogonal Polynomials, Colloq. Publ., Am. Math. Soc., vol. 23 (1975), American Mathematical Society (AMS): American Mathematical Society (AMS) Providence, RI · Zbl 0305.42011
[36] Tayachi, Slim; Zaag, Hatem, Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term, Trans. Am. Math. Soc., 371, 8, 5899-5972 (2019) · Zbl 1423.35186
[37] Tucsnak, Marius; Weiss, George, Observation and Control for Operator Semigroups, Birkhäuser Adv. Texts, Basler Lehrbüch (2009), Birkhäuser: Birkhäuser Basel · Zbl 1188.93002
[38] Velázquez, J. J.L., Higher dimensional blow up for semilinear parabolic equations, Commun. Partial Differ. Equ., 17, 9-10, 1567-1596 (1992) · Zbl 0813.35009
[39] Velázquez, J. J.L., Classification of singularities for blowing up solutions in higher dimensions, Trans. Am. Math. Soc., 338, 1, 441-464 (1993) · Zbl 0803.35015
[40] Wang, Chunpeng; Du, Runmei, Carleman estimates and null controllability for a class of degenerate parabolic equations with convection terms, SIAM J. Control Optim., 52, 3, 1457-1480 (2014) · Zbl 1295.93018
[41] Wang, Chunpeng; Zheng, Sining, Critical Fujita exponents of degenerate and singular parabolic equations, Proc. R. Soc. Edinb., Sect. A, Math., 136, 2, 415-430 (2006) · Zbl 1104.35015
[42] Zheng, Sining; Wang, Chunpeng, Large time behaviour of solutions to a class of quasilinear parabolic equations with convection terms, Nonlinearity, 21, 9, 2179-2200 (2008) · Zbl 1149.35325
[43] Zuazua, Enrique, Some problems and results on the controllability of partial differential equations, (Budapest, Hungary, July 22-26, 1996. Budapest, Hungary, July 22-26, 1996, European Congress of Mathematics (ECM), vol. II (1998), Birkhäuser: Birkhäuser Basel), 276-311 · Zbl 1126.35305
[44] Zuazua, Enrique, Controllability and observability of partial differential equations: some results and open problems, (Handbook of Differential Equations: Evolutionary Equations. Vol. III (2007), Elsevier/North-Holland: Elsevier/North-Holland Amsterdam), 527-621 · Zbl 1193.35234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.