×

Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach. (English) Zbl 1417.93067

Summary: Using the backstepping approach we recover the null controllability for the heat equations with variable coefficients in space in one dimension and prove that these equations can be stabilized in finite time by means of periodic time-varying feedback laws. To this end, on the one hand, we provide a new proof of the well-posedness and the “optimal” bound with respect to damping constants for the solutions of the kernel equations; this allows one to deal with variable coefficients, even with a weak regularity of these coefficients. On the other hand, we establish the well-posedness and estimates for the heat equations with a nonlocal boundary condition at one side.

MSC:

93B05 Controllability
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93B17 Transformations
93B52 Feedback control
93C20 Control/observation systems governed by partial differential equations
35K05 Heat equation

References:

[1] Bardos C., Tartar L.: Sur l’unicité rétrograde des équations paraboliques et quelques questions voisines. Arch. Rational Mech. Anal. 50, 10-25 (1973) · Zbl 0258.35039 · doi:10.1007/BF00251291
[2] Bekiaris-Liberis N., Krstic M.: Compensating the distributed effect of a wave PDE in the actuation or sensing path of multi-input and MIMO LTI systems. Systems Control Lett. 59, 713-719 (2010) · Zbl 1217.93138 · doi:10.1016/j.sysconle.2010.08.007
[3] Bekiaris-Liberis N., Krstic M.: Compensating the distributed effect of diffusion and counter-convection in multi-input and multi-output LTI systems. IEEE Trans. Automat. Control 56, 637-643 (2011) · Zbl 1368.93526 · doi:10.1109/TAC.2010.2091187
[4] Cerpa E., Coron J.-M.: Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition. IEEE Trans. Automat. Control 58, 1688-1695 (2013) · Zbl 1369.93480 · doi:10.1109/TAC.2013.2241479
[5] Coron, J.-M.: Control and nonlinearity, vol. 136 of Mathematical Surveys and Monographs, American Mathematical Soc., Providence, RI, 2007 · Zbl 1140.93002
[6] Coron, J.-M., d’Andréa-Novel, B.: Stabilization of a rotating body beam without damping. IEEE Trans. Automat. Control, 43, 608-618 (1998) · Zbl 0908.93055
[7] Coron J.-M., Lü Q.: Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right. J. Math. Pures Appl. 102, 1080-1120 (2014) · Zbl 1302.35333 · doi:10.1016/j.matpur.2014.03.004
[8] Coron J.-M., Lü Q.: Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation. J. Diff. Equations 259, 3683-3729 (2015) · Zbl 1317.93209 · doi:10.1016/j.jde.2015.05.001
[9] Coron J.-M., Vazquez R., Krstic M., Bastin G.: Local Exponential H2 Stabilization of a 2 × 2 Quasilinear Hyperbolic System Using Backstepping. SIAM J. Control Optim. 51, 2005-2035 (2013) · Zbl 1408.35009 · doi:10.1137/120875739
[10] Di Meglio, F., Vazquez, R., Krstic, M.: Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input. IEEE Trans. Automat. Control, 58, 3097-3111 (2013) · Zbl 1369.93483
[11] Elharfi A.: Explicit construction of a boundary feedback law to stabilize a class of parabolic equations. Differential and Integral Equations 21, 351-362 (2008) · Zbl 1224.35173
[12] Escauriaza L., Alessandrini G.: Null-controllability of one-dimensional parabolic equations. ESAIM Control Optim. Calc. Var. 14, 284-293 (2008) · Zbl 1145.35337 · doi:10.1051/cocv:2007055
[13] Fattorini O. H., Russell D. L.: Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal. 43, 272-292 (1971) · Zbl 0231.93003 · doi:10.1007/BF00250466
[14] Friedman, A.: Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964 · Zbl 0144.34903
[15] Fursikov, A. V., Imanuvilov, O. Y.:Controllability of evolution equations, vol. 34, Seoul National University, Seoul, 1996 · Zbl 0862.49004
[16] Guo Y.-J. L., Littman W.: Null boundary controllability for semilinear heat equations. Appl. Math. Optim. 32, 281-316 (1995) · Zbl 0835.35075 · doi:10.1007/BF01187903
[17] Hu, L., Di Meglio, F.: Finite-time backstepping stabilization of 3 × 3 hyperbolic systems, IEEE European Control Conference, under review, 2015 · Zbl 0835.35075
[18] Hu, L., Di Meglio, F., Vazquez, R., Krstic, M.: Boundary control design of homodirectional and general heterodirectional linear hyperbolic PDEs, Preprint, 2015 · Zbl 1359.93205
[19] Jones B. F.: A fundamental solution for the heat equation which is supported in a strip. J. Math. Anal. Appl. 60, 314-324 (1977) · Zbl 0357.35043 · doi:10.1016/0022-247X(77)90021-X
[20] Krstic M., Guo B. Z., Balogh A., Smyshlyaev A.: Output-feedback stabilization of an unstable wave equation. Automatica 44, 63-74 (2008) · Zbl 1138.93046 · doi:10.1016/j.automatica.2007.05.012
[21] Krstic, M., Kanellakopoulos, I., Kokotovic, P. V.: Nonlinear and adaptive control design, John Wiley & Sons, Inc., New York, 1995 · Zbl 0763.93043
[22] Krstic M., Smyshlyaev A.: Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Systems Control Lett. 57, 750-758 (2008) · Zbl 1153.93022 · doi:10.1016/j.sysconle.2008.02.005
[23] Krstic, M., Smyshlyaev, A.: Boundary control of PDEs: A course on backstepping designs, vol. 16, SIAM, Philadelphia, 2008 · Zbl 1149.93004
[24] Lebeau G., Robbiano L.: Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations 20, 335-356 (1995) · Zbl 0819.35071 · doi:10.1080/03605309508821097
[25] Littman W.: Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5, 567-580 (1978) · Zbl 0395.35007
[26] Liu W.-J.: Boundary feedback stabilization of an unstable heat equation. SIAM J. Control Optim. 42, 1033-1043 (2003) · Zbl 1047.93042 · doi:10.1137/S0363012902402414
[27] Liu W.-J., Krstic M.: Backstepping boundary control of Burgers’s equation with actuator dynamics. Systems Control Lett. 41, 291-303 (2000) · Zbl 0980.93032 · doi:10.1016/S0167-6911(00)00068-2
[28] Liu, W.-J., Krstic, M.: Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation. Nonlinear Anal. Ser. A: Theory Methods,43, 485-507 (2001) · Zbl 0974.35012
[29] Martin P., Rosier L., Rouchon P.: Null controllability of the heat equation using flatness. Automatica 50, 3067-3076 (2014) · Zbl 1309.93027 · doi:10.1016/j.automatica.2014.10.049
[30] Miller L.: The control transmutation method and the cost of fast controls. SIAM J. Control Optim. 45, 762-772 (2006) · Zbl 1109.93009 · doi:10.1137/S0363012904440654
[31] Reissig M.: Hyperbolic equations with non-Lipschitz coefficients. Rend. Sem. Mat. Univ. Politec. Torino 61, 135-181 (2003) · Zbl 1182.35155
[32] Smyshlyaev A., Cerpa E., Krstic M.: Boundary stabilization of a 1-D wave equation with in-domain antidamping. SIAM J. Control Optim. 48, 4014-4031 (2010) · Zbl 1208.35083 · doi:10.1137/080742646
[33] Smyshlyaev A., Krstic M.: Closed-form boundary state feedbacks for a class of 1−D partial integro-differential equations. IEEE Trans. Automat. Control 49, 2185-2202 (2004) · Zbl 1365.93193 · doi:10.1109/TAC.2004.838495
[34] Smyshlyaev A., Krstic M.: On control design for PDEs with space-dependent diffusivity or time-dependent reactivity. Automatica 41, 1601-1608 (2005) · Zbl 1086.93023 · doi:10.1016/j.automatica.2005.04.006
[35] Smyshlyaev A., Krstic M.: Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary. Systems Control Lett. 58, 617-623 (2009) · Zbl 1166.93025 · doi:10.1016/j.sysconle.2009.04.005
[36] Vazquez R., Krstic M.: Control of 1-D parabolic PDEs with Volterra nonlinearities, part I: design. Automatica 44, 2778-2790 (2008) · Zbl 1152.93035 · doi:10.1016/j.automatica.2008.04.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.