×

Eliminating the wavefunction from quantum dynamics: the bi-Hamilton-Jacobi theory, trajectories and time reversal. (English) Zbl 1502.81006

Summary: We observe that Schrödinger’s equation may be written as two real coupled Hamilton-Jacobi (HJ)-like equations, each involving a quantum potential. Developing our established programme of representing the quantum state through exact free-standing deterministic trajectory models, it is shown how quantum evolution may be treated as the autonomous propagation of two coupled congruences. The wavefunction at a point is derived from two action functions, each generated by a single trajectory. The model shows that conservation as expressed through a continuity equation is not a necessary component of a trajectory theory of state. Probability is determined by the difference in the action functions, not by the congruence densities. The theory also illustrates how time-reversal symmetry may be implemented through the collective behaviour of elements that individually disobey the conventional transformation \((\text{T})\) of displacement (scalar) and velocity (reversal). We prove that an integral curve of the linear superposition of two vectors can be derived algebraically from the integral curves of one of the constituent vectors labelled by integral curves associated with the other constituent. A corollary establishes relations between displacement functions in diverse trajectory models, including where the functions obey different symmetry transformations. This is illustrated by showing that a \((\text{T}\)-obeying) de Broglie-Bohm trajectory is a sequence of points on the (non-\(\text{T})\) HJ trajectories, and vice versa.

MSC:

81P05 General and philosophical questions in quantum theory
81P16 Quantum state spaces, operational and probabilistic concepts
81Q65 Alternative quantum mechanics (including hidden variables, etc.)

References:

[1] Holland, P., Computing the wavefunction from trajectories: particle and wave pictures in quantum mechanics and their relation, Ann. Phys., 315, 505-531 (2005) · Zbl 1093.81005 · doi:10.1016/j.aop.2004.09.008
[2] Holland, P., Hydrodynamic construction of the electromagnetic field, Proc. R. Soc. A, 461, 3659-3679 (2005) · Zbl 1255.78007 · doi:10.1098/rspa.2005.1525
[3] Holland, P., Three-dimensional representation of the many-body quantum state, J. Mol. Model., 24, 269 (2018) · doi:10.1007/s00894-018-3804-7
[4] Holland, P.; Kastner, RE; Jeknić-Dugić, J.; Jaroszkiewicz, G., The quantum state as spatial displacement, Quantum Structural Studies: Classical Emergence from the Quantum Level, Chap. 10 (2017), London: World Scientific, London · Zbl 1359.81021
[5] Holland, P., Schrödinger dynamics as a two-phase conserved flow: an alternative trajectory construction of quantum propagation, J. Phys. A: Math. Theor., 42, 075307 (2009) · Zbl 1156.81007 · doi:10.1088/1751-8113/42/7/075307
[6] Holland, P., Trajectory-state theory of the Klein-Gordon field, Eur. Phys. J. Plus, 134, 434 (2019) · doi:10.1140/epjp/i2019-12922-5
[7] Holland, P., Trajectory construction of Dirac evolution, Proc. R. Soc. A., 476, 20190682 (2020) · Zbl 1472.81074 · doi:10.1098/rspa.2019.0682
[8] Bennett, A., Lagrangian fluid dynamics (2006), Cambridge: Cambridge University Press, Cambridge · Zbl 1105.76002 · doi:10.1017/CBO9780511734939
[9] Holland, PR, The Quantum Theory of Motion (1993), Cambridge: Cambridge University Press, Cambridge · Zbl 0854.00009 · doi:10.1017/CBO9780511622687
[10] Holland, P.: Hamiltonian theory of wave and particle in quantum mechanics I: Liouville’s theorem and the interpretation of the de Broglie-Bohm theory; II: Hamilton-Jacobi theory and particle back-reaction. Nuovo Cimento B 116, 1043-1069, 1143-1172 (2001)
[11] Bokulich, A.; French, S.; Saatsi, J., Losing sight of the forest for the psi: beyond the wavefunction hegemony, Scientific Realism and the Quantum Chap (2020), Oxford: Oxford University Press, Oxford · Zbl 1433.81004
[12] Holland, P., Hydrodynamics, particle relabelling and relativity, Int. J. Theor. Phys., 51, 667-683 (2012) · Zbl 1241.83042 · doi:10.1007/s10773-011-0946-0
[13] Holland, P., Uniting the wave and the particle in quantum mechanics, Quantum Stud.: Math. Found., 7, 155-178 (2020) · Zbl 07899115 · doi:10.1007/s40509-019-00207-4
[14] Holland, P., Unification of the wave and guidance equations for spin 1/2, Quantum Stud.: Math. Found., 8, 157-166 (2021) · Zbl 07899158 · doi:10.1007/s40509-020-00234-6
[15] Bowen, RM; Eringen, AC, Theory of mixtures, Continuum Physics 3: Mixtures and EM Field Theories, 1-127 (1996), New York: Academic Press, New York
[16] Drumheller, DS; Bedford, AS, A thermomechanical theory for reacting immiscible mixtures, Arch. Rational Mech. Anal., 73, 257-284 (1980) · Zbl 0446.73100 · doi:10.1007/BF00282206
[17] de Broglie, L., La Thermodynamique de la Particule Isolée (1964), Paris: Gauthier-Villars, Paris · Zbl 0133.23701
[18] Tolman, RC, The Principles of Statistical Mechanics (1979), New York: Dover, New York · JFM 64.0886.07
[19] Sachs, RG, The Physics of Time Reversal (1987), Chicago: University of Chicago Press, Chicago
[20] Roberts, BW; Knox, E.; Wilson, A., Time reversal, The Routledge Companion to Philosophy of Physics Chap. 43 (2021), London: Routledge, London
[21] Nelson, E., Quantum Fluctuations (1985), Princeton: Princeton University Press, Princeton · Zbl 0563.60001 · doi:10.1515/9780691218021
[22] CufaroPetroni, N., Probability and Stochastic Processes for Physicists (2020), Cham: Springer, Cham · Zbl 1437.60001 · doi:10.1007/978-3-030-48408-8
[23] Leacock, RA; Padgett, MS, Hamilton-Jacobi theory and the quantum action variable, Phys. Rev. Lett., 50, 3-6 (1983) · doi:10.1103/PhysRevLett.50.3
[24] Leacock, RA; Padgett, MS, Hamilton-Jacobi/action-angle quantum mechanics, Phys. Rev. D, 28, 2491-2502 (1983) · doi:10.1103/PhysRevD.28.2491
[25] John, MV, Probability and complex quantum trajectories: finding the missing links, Ann. Phys. (NY), 325, 2132-2139 (2010) · Zbl 1198.81118 · doi:10.1016/j.aop.2010.06.008
[26] Chou, CC; Wyatt, RE, Considerations on the probability density in complex space, Phys. Rev. A, 78, 044101 (2008) · doi:10.1103/PhysRevA.78.044101
[27] Lamb, H., Hydrodynamics (1932), Cambridge: Cambridge University Press, Cambridge · JFM 58.1298.04
[28] Truesdell, C., The Kinematics of Vorticity (1954), Bloomington: Indiana University Press, Bloomington · Zbl 0056.18606
[29] Blaszak, M., Multi-Hamiltonian Theory of Dynamical Systems (1998), Berlin: Springer-Verlag, Berlin · Zbl 0912.58017 · doi:10.1007/978-3-642-58893-8
[30] Holland, P., Dynamics-dependent symmetries in Newtonian mechanics, Phys. Scr., 89 (2014) · doi:10.1088/0031-8949/89/01/015101
[31] Holland, P.; Philippidis, C., Implications of Lorentz covariance for the guidance equation in two-slit quantum interference, Phys. Rev. A, 67, 062105 (2003) · doi:10.1103/PhysRevA.67.062105
[32] van Dijk, W.; Masafumi Toyama, F.; Prins, SJ; Spyksma, K., Analytic time-dependent solutions of the one-dimensional Schrödinger equation, Am. J. Phys., 82, 955-961 (2014) · doi:10.1119/1.4885376
[33] Wyatt, RE, Quantum Dynamics with Trajectories (2005), New York: Springer, New York · Zbl 1107.81003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.