×

Invariants of symplectic and orthogonal groups acting on \(\mathrm{GL}(n, \mathbb{C})\)-modules. (English) Zbl 1502.13018

Summary: Let \(\mathrm{GL}(n) = \mathrm{GL}(n, \mathbb{C})\) denote the complex general linear group and let \(G \subset \mathrm{GL}(n)\) be one of the classical complex subgroups \(\mathrm{O}(n)\), \(\mathrm{SO}(n)\), and \(\mathrm{Sp}(2k)\) (in the case \(n = 2k\)). We take a finite dimensional polynomial \(\mathrm{GL}(n)\)-module \(W\) and consider the symmetric algebra \(S(W)\). Extending previous results for \(G = \mathrm{SL}(n)\), we develop a method for determining the Hilbert series \(H(S(W)^G, t)\) of the algebra of invariants \(S(W)^G\). Our method is based on simple algebraic computations and can be easily realized using popular software packages. Then we give many explicit examples for computing \(H(S(W)^G, t)\). As an application, we consider the question of regularity of the algebra \(S(W)^{\mathrm{O}(n)}\). For \(n=2\) and \(n=3\) we give a complete list of modules \(W\), so that if \(S(W)^{\mathrm{O}(n)}\) is regular then \(W\) is in this list. As a further application, we extend our method to compute also the Hilbert series of the algebras of invariants \(\Lambda(S^2V)^G\) and \(\Lambda(\Lambda^2 V)^G\), where \(V = \mathbb{C}^n\) denotes the standard \(\mathrm{GL}(n)\)-module.

MSC:

13A50 Actions of groups on commutative rings; invariant theory
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
05E05 Symmetric functions and generalizations
15A72 Vector and tensor algebra, theory of invariants
15A75 Exterior algebra, Grassmann algebras

References:

[1] Benanti F, Boumova S, Drensky V, Genov GK, Koev P. Computing with rational symmetric functions and applications to invariant theory and PI-algebras. Serdica Mathemathical Journal 2012; 38 (1-3): 137-188. · Zbl 1374.13009
[2] Berele A. Applications of Belov’s theorem to the cocharacter sequence of p.i. algebras. Journal of Algebra 2006; 298 (1): 208-214. doi: 10.1016/j.jalgebra.2005.09.011 · Zbl 1106.16024 · doi:10.1016/j.jalgebra.2005.09.011
[3] Derksen H, Kemper G. Computational Invariant Theory. Invariant Theory and Algebraic Transformation Groups, I. Encyclopaedia of Mathematical Sciences, 130, Berlin: Springer-Verlag, 2002. · Zbl 1011.13003
[4] Drensky V, Genov GK. Multiplicities of Schur functions in invariants of two 3 × 3 matrices. Journal of Algebra 2003; 264 (2): 496-519. doi: 10.1016/S0021-8693(03)00070-X · Zbl 1027.16013 · doi:10.1016/S0021-8693(03)00070-X
[5] Elliott EB. On linear homogeneous diophantine equations. Quarterly Journal of Pure and Applied Mathematics 1903; 34: 348-377. · JFM 34.0219.01
[6] Fulton W, Harris J. Representation Theory. A First Course. Graduate Texts in Mathematics, 129, Readings in Mathematics, New York: Springer-Verlag, 1991. · Zbl 0744.22001
[7] Goodman R, Wallach N. Symmetry, Representations, and Invariants. Graduate Texts in Mathematics, 255, Dordrecht-Heidelberg-London-New York: Springer-Verlag, 2009. · Zbl 1173.22001
[8] Howe R, Tan E, Willenbring J. Stable branching rules for classical symmetric pairs. Transactions of the American Mathematical Society 2005; 357 (4): 1601-1626. doi: 10.1090/S0002-9947-04-03722-5 · Zbl 1069.22006 · doi:10.1090/S0002-9947-04-03722-5
[9] Itoh M. Invariant theory in exterior algebras and Amitsur-Levitzki type theorems. Advances in Mathematics 2016; 288: 679-701. doi: 10.1016/j.aim.2015.09.033 · Zbl 1344.15012 · doi:10.1016/j.aim.2015.09.033
[10] Kac V. Some remarks on nilpotent orbits. Journal of Algebra 1980; 64 (1): 190-213. doi: 10.1016/0021-8693(80)90141-6 · Zbl 0431.17007 · doi:10.1016/0021-8693
[11] King R. Modification rules and products of irreducible representations for the unitary, orthogonal, and symplectic groups. Journal of Mathematical Physics 1971; 12 (8): 1588-1598. doi: 10.1063/1.1665778 · Zbl 0239.20061 · doi:10.1063/1.1665778
[12] Macdonald IG. Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs, New York: The Clarendon Press, Oxford University Press, 1979, Second Edition, 1995. · Zbl 0487.20007
[13] MacMahon PA. Combinatory Analysis, vols 1 and 2, Cambridge Univ. Press, 1915, 1916. Reprinted in one volume: New York: Chelsea Publishing Company, 1960. · JFM 45.1271.01
[14] Procesi C. Lie Groups. An Approach through Invariants and Representations. Universitext, New York: Springer, 2007. · Zbl 1154.22001
[15] Schwarz GW. Representations of simple Lie groups with regular rings of invariants. Inventiones mathematicae 1978; 49 (2): 167-191. doi: 10.1007/BF01403085 · Zbl 0391.20032 · doi:10.1007/BF01403085
[16] Xin G. A fast algorithm for MacMahon’s partition analysis. Electronic Journal of Combinatorics 2004; 11 (1): Research paper R58. doi: 10.37236/1811 · Zbl 1066.11060 · doi:10.37236/1811
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.