×

Multivariate Hawkes processes on inhomogeneous random graphs. (English) Zbl 1502.05226

This paper constructs and describes the limiting behavior of a system of randomly interacting neurons, with a combination of a random graph embedded in the space and random interactions corresponding to a Hawkes process. More precisely, first, we consider \(N\) vertices in \(\mathbb R^n\), and add edges randomly, with probabilities depending on the positions of the endpoints in the \(n\)-dimensional space. Once we have this random graph, a multivariate Hawkes process is constructed, where only connected vertices can interact, and the firing rate of the neurons depends on the past of their neighbors. In this sense, the original Hawkes process corresponds to the mean-field case, where the underlying graph is a complete graph without any spatial structure, while here they are connected randomly with probabilities depending on their position, and interactions are restricted to neighboring vertices. The significance of this model is that it incorporates the most important properties of interactions of neurons (spatial structure, inhomogeneous graph structure, random interactions with varying intensity), by building an extension of the Hawkes process.
The first goal of the paper is to find sufficient conditions on the intensities and the kernel function defining the random graph such that the model becomes well-defined even if the number of vertices is infinite. If the number of vertices is finite, the Lipschitz continuity of the function which gives the intensity of the interaction of a vertex \(i\) given the past of the process at the neighboring vertices of \(i\) turns out to be sufficient. Then stronger conditions are formulated on the macroscopic degree of the vertices, which are sufficient for the definition of the model if the number of vertices is infinite.
Once the model is well-defined, we can ask whether it is true that the finite-vertex version converges to the version where the number of vertices is infinite. By using concepts of the theory of limits of dense graph sequences (e.g. cut distance), the paper finds sufficient conditions for this convergence as well. The paper also examines the limit of the intensity of the interactions when time goes to infinity.
The proofs build together various tools from the theory of differential equations, probability theory (e.g. concentration inequalities), and graph limit theory.

MSC:

05C80 Random graphs (graph-theoretic aspects)
44A35 Convolution as an integral transform
92B20 Neural networks for/in biological studies, artificial life and related topics
68T07 Artificial neural networks and deep learning

References:

[1] Amari, S.-I., Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybernet., 27, 2, 77-87 (1977) · Zbl 0367.92005
[2] Athreya, K.; Murthy, K. R., Feller’s renewal theorem for systems of renewal equations, J. Indian Inst. Sci., 58, 10, 437 (1976) · Zbl 0356.60057
[3] Baladron, J.; Fasoli, D.; Faugeras, O.; Touboul, J., Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons, J. Math. Neurosci., 2, 1, 10 (2012) · Zbl 1322.60205
[4] Bayraktar, E.; Chakraborty, S.; Wu, R., Graphon mean field systems (2021), arXiv:2003.13180
[5] Bet, G.; Coppini, F.; Nardi, F. R., Weakly interacting oscillators on dense random graphs (2020), arXiv:2006.07670
[6] Bhamidi, S.; Budhiraja, A.; Wu, R., Weakly interacting particle systems on inhomogeneous random graphs, Stochastic Process. Appl., 129, 12 (2016)
[7] Billingsley, P., Convergence of Probability Measures (1968), Wiley: Wiley New York · Zbl 0172.21201
[8] Borgs, C.; Chayes, J. T.; Cohn, H.; Zhao, Y., An \(L^p\) theory of sparse graph convergence II: LD convergence, quotients and right convergence, Ann. Probab., 46, 1, 337-396 (2018) · Zbl 1386.05099
[9] Borgs, C.; Chayes, J. T.; Cohn, H.; Zhao, Y., An \(L^p\) theory of sparse graph convergence I: Limits, sparse random graph models, and power law distributions, Trans. Amer. Math. Soc., 372, 5, 3019-3062 (2019) · Zbl 1417.05186
[10] Borgs, C.; Chayes, J.; Lovász, L.; Sós, V.; Vesztergombi, K., Limits of randomly grown graph sequences, European J. Combin., 32, 7, 985-999 (2011) · Zbl 1229.05247
[11] Bosking, W. H.; Zhang, Y.; Schofield, B.; Fitzpatrick, D., Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex, J. Neurosci., 17, 6, 2112-2127 (1997)
[12] Brémaud, P.; Massoulié, L., Stability of nonlinear Hawkes processes, Ann. Probab., 1563-1588 (1996) · Zbl 0870.60043
[13] Bressloff, P. C., Spatiotemporal dynamics of continuum neural fields, J. Phys. A, 45, 3, Article 033001 pp. (2011) · Zbl 1263.92008
[14] Budhiraja, A.; Wu, R., Some fluctuation results for weakly interacting multi-type particle systems, Stochastic Process. Appl., 126, 8, 2253-2296 (2016) · Zbl 1338.60228
[15] Chevallier, J., Mean-field limit of generalized Hawkes processes, Stochastic Process. Appl., 127, 12, 3870-3912 (2017) · Zbl 1374.60090
[16] Chevallier, J.; Duarte, A.; Löcherbach, E.; Ost, G., Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels, Stochastic Process. Appl., 129, 1, 1-27 (2019) · Zbl 1404.60069
[17] Chung, F.; Lu, L., Connected components in random graphs with given expected degree sequences, Ann. Comb., 6, 2, 125-145 (2002) · Zbl 1009.05124
[18] Coppini, Fabio, Long time dynamics for interacting oscillators on graphs, Ann. Appl. Probab., 32, 1, 360-391 (2022) · Zbl 1487.82015
[19] Coppini, F.; Dietert, H.; Giacomin, G., A law of large numbers and large deviations for interacting diffusions on Erdős-Rényi graphs, Stoch. Dyn., 20, 02, Article 2050010 pp. (2019) · Zbl 1434.60279
[20] Cormier, Q.; Tanré, E.; Veltz, R., Long time behavior of a mean-field model of interacting neurons, Stochastic Process. Appl., 130, 5, 2553-2595 (2020) · Zbl 1437.35708
[21] Costa, M.; Graham, C.; Marsalle, L.; Tran, V. C., Renewal in Hawkes processes with self-excitation and inhibition, Adv. Appl. Probab., 52, 3, 879-915 (2020) · Zbl 1473.60081
[22] Csörgő, M., (Quantile processes with statistical applications. Quantile processes with statistical applications, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 42 (1983), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA) · Zbl 0518.62043
[23] Delarue, F.; Inglis, J.; Rubenthaler, S.; Tanré, E., Global solvability of a networked integrate-and-fire model of McKean-Vlasov type, Ann. Appl. Probab., 25, 4, 2096-2133 (2015) · Zbl 1322.60085
[24] Delattre, S.; Fournier, N.; Hoffmann, M., Hawkes processes on large networks, Ann. Appl. Probab., 26, 1, 216-261 (2016) · Zbl 1334.60082
[25] Delattre, S.; Giacomin, G.; Luçon, E., A note on dynamical models on random graphs and Fokker-Planck equations, J. Stat. Phys., 165, 4, 785-798 (2016) · Zbl 1360.82053
[26] Dembo, A.; Zeitouni, O., Large Deviations Techniques and Applications, Applications of Mathematics (New York) (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0896.60013
[27] Diaconis, P.; Janson, S., Graph limits and exchangeable random graphs, Rend. Mat. Appl. (7), 28, 1, 33-61 (2008) · Zbl 1162.60009
[28] Dion, C.; Lemler, S.; Löcherbach, E., Exponential ergodicity for diffusions with jumps driven by a Hawkes process, Theory Probab. Math. Statist., 102, 97-115 (2021) · Zbl 1477.60075
[29] Ditlevsen, S.; Löcherbach, E., Multi-class oscillating systems of interacting neurons, Stochastic Process. Appl., 127, 6, 1840-1869 (2017) · Zbl 1367.92024
[30] Dudley, R. M., Real Analysis and Probability (2002), Cambridge University Press · Zbl 1023.60001
[31] Duval, C.; Luçon, E.; Pouzat, C., Interacting Hawkes processes with multiplicative inhibition (2021), arXiv:2105.10597 · Zbl 1492.60134
[32] Fatt, P.; Katz, B., Spontaneous subthreshold activity at motor nerve endings, J. Physiol., 117, 1, 109-128 (1952)
[33] Feller, W., On the integral equation of renewal theory, Ann. Math. Stat., 12, 3, 243-267 (1941) · JFM 67.0370.02
[34] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 6, 445-466 (1961)
[35] Hawkes, A. G., Point spectra of some self-exciting and mutually exciting point processes, Biometrika, 58, 1, 83-90 (1971) · Zbl 0219.60029
[36] Hawkes, A. G.; Oakes, D., A cluster process representation of a self-exciting process, J. Appl. Probab., 11, 3, 493-503 (1974) · Zbl 0305.60021
[37] Heesen, S.; Stannat, W., Fluctuation limits for mean-field interacting nonlinear Hawkes processes, Stochastic Process. Appl., 139, 280-297 (2021) · Zbl 1475.60091
[38] Hodara, P.; Löcherbach, E., Hawkes processes with variable length memory and an infinite number of components, Adv. Appl. Probab., 49, 1, 84-107 (2017) · Zbl 1425.60048
[39] Hodgkin, A. L.; Huxley, A. F., Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo, J. Physiol., 116, 4, 449-472 (1952)
[40] Hoeffding, W., The Strong Law of Large Numbers for U-StatisticsTechnical report (1961), North Carolina State University. Dept. of Statistics
[41] Jacod, J.; Shiryaev, A., Limit Theorems for Stochastic Processes (2013), Springer Science & Business Media
[42] Janson, S., (Graphons, Cut Norm and Distance, Couplings and Rearrangements. Graphons, Cut Norm and Distance, Couplings and Rearrangements, New York Journal of Mathematics. NYJM Monographs, vol. 4 (2013)) · Zbl 1268.05001
[43] Lacker, D.; Ramanan, K.; Wu, R., Local weak convergence for sparse networks of interacting processes (2021), arXiv:1904.02585
[44] Lapique, L., Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarization, J. Physiol. Pathol., 9, 620-635 (1907)
[45] Lovász, L., Large Networks and Graph Limits, Vol. 60 (2012), American Mathematical Soc. · Zbl 1292.05001
[46] Lovász, L.; Szegedy, B., Limits of dense graph sequences, J. Combin. Theory Ser. B, 96, 6, 933-957 (2006) · Zbl 1113.05092
[47] Luçon, E., Quenched asymptotics for interacting diffusions on inhomogeneous random graphs, Stochastic Process. Appl., 130, 11, 6783-6842 (2020) · Zbl 1454.60046
[48] Luçon, E.; Stannat, W., Transition from gaussian to non-gaussian fluctuations for mean-field diffusions in spatial interaction, Ann. Appl. Probab., 26, 6, 3840-3909 (2016) · Zbl 1358.60104
[49] Masi, A. D.; Galves, A.; Löcherbach, E.; Presutti, E., Hydrodynamic limit for interacting neurons, J. Stat. Phys., 158, 4, 866-902 (2014) · Zbl 1315.35222
[50] McKean, H. P.J., Propagation of chaos for a class of non-linear parabolic equations, (Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7) (1967), Catholic Univ.), 41-57, Air Force Office Sci. Res., Arlington, Va., 1967
[51] Medvedev, G. S., The nonlinear heat equation on W-random graphs, Arch. Ration. Mech. Anal., 212, 3, 781-803 (2013) · Zbl 1293.35333
[52] Mountcastle, V., The columnar organization of the neocortex, Brain, 120, 4, 701-722 (1997)
[53] Nagumo, J.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 50, 10, 2061-2070 (1962)
[54] Nelsen, R. B., An Introduction to Copulas (1999), Springer: Springer New York · Zbl 0909.62052
[55] Ogata, Y., Statistical models for earthquake occurrences and residual analysis for point processes, J. Amer. Statist. Assoc., 83, 401, 9-27 (1988)
[56] Oliveira, R. I.; Reis, G. H., Interacting diffusions on random graphs with diverging average degrees: Hydrodynamics and large deviations, J. Stat. Phys., 176, 5, 1057-1087 (2019) · Zbl 1421.05081
[57] Oliveira, R. I.; Reis, G. H.; Stolerman, L. M., Interacting diffusions on sparse graphs: hydrodynamics from local weak limits. Electron, J. Probab., 25, 110, 35 (2020) · Zbl 1459.60207
[58] Omelchenko, I.; Riemenschneider, B.; Hövel, P.; Maistrenko, Y.; Schöll, E., Transition from spatial coherence to incoherence in coupled chaotic systems, Phys. Rev. E, 85, 2 (2012)
[59] Ouadah, S.; Robin, S.; Latouche, P., Degree-based goodness-of-fit tests for heterogeneous random graph models: Independent and exchangeable cases, Scand. J. Stat., 47, 1, 156-181 (2019) · Zbl 1442.62775
[60] Raad, M. B.; Ditlevsen, S.; Löcherbach, E., Stability and mean-field limits of age dependent Hawkes processes, Ann. Inst. Henri PoincarÉ, Probab. Stat., 56, 3 (2020) · Zbl 1466.60102
[61] Raad, M. B.; Löcherbach, E., Stability for Hawkes processes with inhibition, Electron. Commun. Probab., 25, 33, 9 (2020) · Zbl 1439.60048
[62] Schaefer, H. H., Banach Lattices and Positive Operators (1974), Springer Berlin Heidelberg · Zbl 0296.47023
[63] Smith, D., Mechanisms of action potential propagation failure at sites of axon branching in the crayfish, J. Physiol., 301, 1, 243-259 (1980)
[64] Sznitman, A.-S., Topics in propagation of chaos, (Hennequin, P.-L., Ecole D’Eté de Probabilités de Saint-Flour XIX — 1989 (1991), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 165-251 · Zbl 0732.60114
[65] Touboul, J., Propagation of chaos in neural fields, Ann. Appl. Probab., 24, 3, 1298-1328 (2014) · Zbl 1305.60107
[66] Varadarajan, V. S., On the convergence of sample probability distributions, 19, 1/2, 23-26 (1958) · Zbl 0082.34201
[67] Wilson, H. R.; Cowan, J. D., Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J., 12, 1, 1-24 (1972)
[68] Zerner, M., Quelques propriétés spectrales des opérateurs positifs, J. Funct. Anal., 72, 2, 381-417 (1987) · Zbl 0642.47031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.