×

Stability and mean-field limits of age dependent Hawkes processes. (English. French summary) Zbl 1466.60102

This paper introduces a multivariate Hawkes process with a special type of age dependent rate function. “It incorporates individual post-jump behavior into the framework of the usual Hawkes model. This allows to model recovery properties such as refractory periods, where the effects of the network are momentarily being suppressed or altered. We show how classical stability results for Hawkes processes can be improved by introducing age into the system. We neither need to a priori bound the intensities nor to impose any conditions on the Lipschitz constants. When the interactions between neurons are of mean-field type, we study large network limits and establish the propagation of chaos property of the system. The results we obtain are similar to what has been shown for ordinary nonlinear Hawkes processes in [P. Brémaud and L. Massoulié, Ann. Probab. 24, No. 3, 1563–1588 (1996; Zbl 0870.60043)], and [M. Costa et al., “ Renewal in Hawkes processes with self-excitation and inhibition”, Preprint, arXiv:1801.04645; https://hal.archives-ouvertes.fr/hal-01683954]”.

MSC:

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60G57 Random measures
60K05 Renewal theory

Citations:

Zbl 0870.60043

References:

[1] E. Bacry and J. F. Muzy. Hawkes model for price and trades high-frequency dynamics. Quant. Finance 14 (2014) 1147-1166. · Zbl 1402.91750 · doi:10.1080/14697688.2014.897000
[2] P. Brémaud and L. Massoulié. Stability of nonlinear Hawkes processes. Ann. Probab. 24 (3) (1996) 1563-1588. · Zbl 0870.60043
[3] J. Chevallier. Mean-field limit of generalized Hawkes processes. Stochastic Process. Appl. 127 (2017) 3870-3912. · Zbl 1374.60090 · doi:10.1016/j.spa.2017.02.012
[4] J. Chevallier, M. J. Caceres, M. Doumic and P. Reynaud-Bouret. Microscopic approach of a time elapsed neural model. Math. Models Methods Appl. Sci. 25 (14) (2015) 2669-2719. · Zbl 1325.35231 · doi:10.1142/S021820251550058X
[5] M. Costa, C. Graham, L. Marsalle and V. C. Tran. Renewal in Hawkes processes with self-excitation and inhibition, 2018. Available at arXiv.org/abs/1801.04645.
[6] D. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Springer-Verlag, New York, 1988. · Zbl 0657.60069
[7] S. Delattre, N. Fournier and M. Hoffmann. Hawkes processes on large networks. Ann. Appl. Probab. 26 (2016) 216-261. · Zbl 1334.60082 · doi:10.1214/14-AAP1089
[8] S. Ditlevsen and E. Löcherbach. Multi-class oscillating systems of interacting neurons. Stochastic Process. Appl. 127 (2017) 1840-1869. · Zbl 1367.92024 · doi:10.1016/j.spa.2016.09.013
[9] A. Duarte, E. Löcherbach and G. Ost. Stability, convergence to equilibrium and simulation of non-linear Hawkes Processes with memory kernels given by the sum of Erlang kernels. Available at arXiv:1610.03300, 2017. Submitted.
[10] N. Fournier and E. Löcherbach. A toy model of interacting neurons. Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016) 1844-1876. · Zbl 1355.92014 · doi:10.1214/15-AIHP701
[11] F. Gerhard, M. Deger and W. Truccolo. On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs. PLoS Comput. Biol. 13 (2) (2017), e1005390.
[12] C. Graham and P. Robert. Interacting multi-class transmissions in large stochastic systems. Ann. Appl. Probab. 19 (6) (2009) 2334-2361. · Zbl 1179.60067 · doi:10.1214/09-AAP614
[13] P. R. Halmos. Measure Theory. Springer-Verlag, New York, 1974. · Zbl 0283.28001
[14] A. G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika 58 (1971) 83-90. · Zbl 0219.60029 · doi:10.1093/biomet/58.1.83
[15] A. G. Hawkes and D. Oakes. A cluster process representation of a self-exciting process. J. Appl. Probab. 11 (1974) 493-503. · Zbl 0305.60021 · doi:10.2307/3212693
[16] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, 2nd edition. Springer-Verlag, Berlin, 2003. · Zbl 1018.60002
[17] Y. Miyahara. Invariant measures of ultimately bounded stochastic processes. Nagoya Math. J. 49 (1973) 149-153. · Zbl 0244.60048 · doi:10.1017/S0027763000015361
[18] E. Nummelin. A splitting technique for Harris recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 43 (1978) 309-318. · Zbl 0364.60104 · doi:10.1007/BF00534764
[19] K. Pakdaman, B. Perthame and D. Salort. Relaxation and self-sustained oscillations in the time elapsed neuron network model. SIAM J. Appl. Math 73 (2013) 1260-1279. · Zbl 1278.82046 · doi:10.1137/110847962
[20] P. Reynaud-Bouret, V. Rivoirard and C. Tuleau-Malot In Inference of Functional Connectivity in Neurosciences via Hawkes Processes. 1st IEEE Global Conference on Signal and Information Processing, Austin, Texas, 2013. · Zbl 1321.92047 · doi:10.1186/2190-8567-4-3
[21] P. Reynaud-Bouret and S. Schbath. Adaptive estimation for Hawkes processes; application to genome analysis. Ann. Statist. 5 (2010) 2781-2822. · Zbl 1200.62135 · doi:10.1214/10-AOS806
[22] A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.