×

Fractional data-driven model for stabilization of uncertain discrete-time nonlinear systems. (English) Zbl 1501.93109

Summary: This paper proposes a novel data-driven control for stabilization of a class of uncertain discrete-time nonlinear systems. The proposed method is based on the compact form dynamic linearization technique, which relates the first variation of the output signal with the fractional-order variation of the input one. Then, a discrete-time controller is proposed, based on the obtained fractional-order data-driven equivalent model. In order to compute the proposed controller and estimator, only input-output data information is considered. The uniform ultimately boundedness of the tracking errors are demonstrated by a formal analysis. Finally, comparison results based on simulations are presented to highlight the effectiveness of the proposed methodology.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C57 Sampled-data control/observation systems
26A33 Fractional derivatives and integrals
93C55 Discrete-time control/observation systems
93C41 Control/observation systems with incomplete information
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Hou, Z.; Jin, S., A novel data-driven control approach for a class of discrete-time nonlinear systems, IEEE Trans. Control Syst. Technol., 19, 6, 1549-1558 (2010)
[2] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (1998), Elsevier
[3] Yin, S.; Li, X.; Gao, H.; Kaynak, O., Data-based techniques focused on modern industry: an overview, IEEE Trans. Ind. Electron., 62, 1, 657-667 (2014)
[4] Liu, D.; Yang, G.-H., Event-based model-free adaptive control for discrete-time non-linear processes, IET Control Theory Appl., 11, 15, 2531-2538 (2017)
[5] Benosman, M., Model-based vs data-driven adaptive control: an overview, Int. J. Adapt. Control Signal Process., 32, 5, 753-776 (2018) · Zbl 1396.93068
[6] Datta, A.; Ho, M.-T.; Bhattacharyya, S. P., Structure and Synthesis of PID Controllers (1999), Springer Science & Business Media
[7] Su, Y. X.; Sun, D.; Duan, B. Y., Design of an enhanced nonlinear PID controller, Mechatronics, 15, 8, 1005-1024 (2005)
[8] Parra-Vega, V.; Arimoto, S.; Liu, Y.-H.; Hirzinger, G.; Akella, P., Dynamic sliding PID control for tracking of robot manipulators: theory and experiments, IEEE Trans. Rob. Autom., 19, 6, 967-976 (2003)
[9] Vinagre, B. M.; Monje, C. A.; Calderón, A. J.; Suárez, J. I., Fractional PID controllers for industry application. a brief introduction, J. Vib. Control, 13, 9-10, 1419-1429 (2007) · Zbl 1171.70012
[10] Podlubny, I., Fractional-order systems and PI \({}^\lambda\) D \({}^\mu \)-controllers, IEEE Trans. Automat. Control, 44, 1, 208-214 (1999) · Zbl 1056.93542
[11] Åström, K. J.; Hang, C. C.; Persson, P.; Ho, W. K., Towards intelligent PID control, Automatica, 28, 1, 1-9 (1992)
[12] Fliess, M.; Join, C., Intelligent PID controllers, Mediterranean Conference on Control and Automation, 326-331 (2008), IEEE
[13] Kuc, T.-Y.; Han, W.-G., An adaptive PID learning control of robot manipulators, Automatica, 36, 5, 717-725 (2000) · Zbl 0973.93011
[14] Esfandyari, M.; Fanaei, M. A.; Zohreie, H., Adaptive fuzzy tuning of PID controllers, Neural Comput. Appl., 23, 1, 19-28 (2013)
[15] Mizumoto, I.; Ikeda, D.; Hirahata, T.; Iwai, Z., Design of discrete time adaptive PID control systems with parallel feedforward compensator, Control Eng. Pract., 18, 2, 168-176 (2010)
[16] El-Sharif, I. A.; Hareb, F. O.; Zerek, A. R., Design of discrete-time PID controller, International Conference on Control, Engineering & Information Technology, 110-115 (2014)
[17] Hou, Z.; Xiong, S., On model-free adaptive control and its stability analysis, IEEE Trans. Automat. Control, 64, 11, 4555-4569 (2019) · Zbl 1482.93307
[18] Duan, L.; Hou, Z.; Yu, X.; Jin, S.; Lu, K., Data-driven model-free adaptive attitude control approach for launch vehicle with virtual reference feedback parameters tuning method, IEEE Access, 7, 54106-54116 (2019)
[19] Hou, Z.; Jin, S., Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems, IEEE Trans. Neural Netw., 22, 12, 2173-2188 (2011)
[20] Shi, X.; Cao, Y.; Li, Y.; Ma, J.; Shahidehpour, M.; Wu, X.; Li, Z., Data-driven model-free adaptive damping control with unknown control direction for wind farms, Int. J. Electr. Power Energy Syst., 123, 106213 (2020)
[21] Hashjin, S. A.; Pang, S.; Miliani, E.-H.; Ait-Abderrahim, K.; Nahid-Mobarakeh, B., Data-driven model-free adaptive current control of a wound rotor synchronous machine drive system, IEEE Trans. Transp. Electrif., 6, 3, 1146-1156 (2020)
[22] Gehlhar, R.; Chen, Y.; Ames, A. D., Data-driven characterization of human interaction for model-based control of powered prostheses, IEEE/RSJ International Conference on Intelligent Robots and Systems, 4126-4133 (2020), IEEE
[23] Broad, A.; Abraham, I.; Murphey, T.; Argall, B., Data-driven Koopman operators for model-based shared control of human-machine systems, Int. J. Rob. Res., 39, 9, 1178-1195 (2020)
[24] Parmar, N.; Refai, H.; Runolfsson, T., A survey on the methods and results of data-driven Koopman analysis in the visualization of dynamical systems, IEEE Trans. Big Data (2020)
[25] Ma, J.; Dong, S.; Chen, G.; Peng, P.; Qian, L., A data-driven normal contact force model based on artificial neural network for complex contacting surfaces, Mech. Syst. Signal Process., 156, 107612 (2021)
[26] Liu, S.; Hou, Z.; Zhang, X.; Ji, H., Model-free adaptive control method for a class of unknown MIMO systems with measurement noise and application to quadrotor aircraft, IET Control Theory Appl., 14, 15, 2084-2096 (2020) · Zbl 1542.93216
[27] Kergus, P.; Formentin, S.; Poussot-Vassal, C.; Demourant, F., Data-driven control design in the Loewner framework: dealing with stability and noise, 2018 European Control Conference (ECC), 1704-1709 (2018), IEEE
[28] Hou, M.; Wang, Y., A data driven fractional-order terminal sliding mode control method, IEEE Data Driven Control and Learning Systems Conference, 42-46 (2019), IEEE
[29] Machado, J. A., Discrete-time fractional-order controllers, Fract. Calculus Appl. Anal., 4, 47-66 (2001) · Zbl 1111.93307
[30] Ortigueira, M. D., Fractional discrete-time linear systems, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, 2241-2244 (1997), IEEE
[31] Sun, G.; Ma, Z.; Yu, J., Discrete-time fractional order terminal sliding mode tracking control for linear motor, IEEE Trans. Ind. Electron., 65, 4, 3386-3394 (2017)
[32] Kuang, Z.; Gao, H.; Tomizuka, M., Precise linear-motor synchronization control via cross-coupled second-order discrete-time fractional-order sliding mode, IEEE/ASME Trans. Mechatron., 26, 1, 358-368 (2020)
[33] Ma, H.; Li, Y., Fractional order exponential type discrete-time sliding mode control, Int. J. Control Autom. Syst., 18, 2, 374-383 (2020)
[34] Chiranjeevi, T.; Biswas, R. K., Discrete-time fractional optimal control, Mathematics, 5, 2, 25 (2017) · Zbl 1368.49026
[35] Yakoub, Z.; Amairi, M.; Chetoui, M.; Saidi, B.; Aoun, M., Model-free adaptive fractional order control of stable linear time-varying systems, ISA Trans., 67, 193-207 (2017)
[36] Shao, S.; Chen, M., Adaptive neural discrete-time fractional-order control for a UAV system with prescribed performance using disturbance observer, IEEE Trans. Syst. Man Cybern.Syst. (2018)
[37] Li, Y.; Hou, Z.; Liu, X., Full form dynamic linearization based data-driven MFAC for a class of discrete-time nonlinear systems, 2011 Chinese Control and Decision Conference (CCDC), 127-132 (2011), IEEE
[38] Hou, Z.; Zhu, Y., Controller-dynamic-linearization-based model free adaptive control for discrete-time nonlinear systems, IEEE Trans. Ind. Inf., 9, 4, 2301-2309 (2013)
[39] Li, X.; Xu, Z., Pattern-moving-based partial form dynamic linearization model free adaptive control for a class of nonlinear systems, Actuators, vol. 10, 223 (2021), MDPI
[40] Wei, Y.; Chen, Y.; Liu, T.; Wang, Y., Lyapunov functions for nabla discrete fractional order systems, ISA Trans., 88, 82-90 (2019)
[41] Wei, Y., Fractional difference inequalities with their implications to the stability analysis of nabla fractional order systems, Nonlinear Dyn., 104, 4, 3643-3654 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.