×

Isometric decomposition operators, function spaces \(E_{p,q}^{\lambda}\) and applications to nonlinear evolution equations. (English) Zbl 1099.46023

The main goal of this paper is to study the basic estimates for the semigroup \[ U(t):=\exp\bigl((a+i\alpha)t\Delta\bigr),\;a\geq 0,\;\alpha \in\mathbb{R},\;a+|\alpha|\neq 0,\tag{1} \] in certain function spaces. The authors using the isometric decomposition to the frequency spaces, introduce a new class of function spaces \(\mathbb{E}^\lambda_{p,q}\), which is a subspace of the Gevrey 1-class \(G_1(\mathbb{R}^n)\subset C^\infty (\mathbb{R}^n)\) for \(\lambda>0\), and study the Cauchy problem for the nonlinear Schrödinger equation, the complex Ginzburg–Landau equation and the Navier–Stokes equation. Some well-posed results are obtained as well as the regularity behaviour.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35K55 Nonlinear parabolic equations
35Q30 Navier-Stokes equations
35Q55 NLS equations (nonlinear Schrödinger equations)
47D06 One-parameter semigroups and linear evolution equations
Full Text: DOI

References:

[1] Bartuccelli, M. V.; Constantin, P.; Doering, C.; Gibbon, J.; Gisselfält, M., On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation, Physica D, 44, 421-444 (1990) · Zbl 0702.76061
[2] Bechouche, P.; Jüngel, A., Inviscid limits of the complex Ginzburg-Landau equation, Commun. Math. Phys., 214, 201-226 (2000) · Zbl 0978.35059
[3] Bergh, J.; Löfström, J., Interpolation Spaces (1976), Springer: Springer Berlin · Zbl 0344.46071
[4] Bourgain, J., The global solutions of nonlinear Schrödinger equations (1999), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1384.35115
[5] Brand, H. R.; Deissler, R. J., Interaction of localized solutions for subcritical bifurcations, Phys. Rev. Lett., 63, 2801-2804 (1989)
[6] Brezis, H.; Gallouet, T., Nonlinear Schrödinger evolution equation, Nonlinear Anal. Theory Methods Appl., 4, 677-681 (1981) · Zbl 0451.35023
[7] Cazenave, T.; Weissler, F. B., The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\), Nonlinear Anal. Theory Methods Appl., 14, 807-836 (1990) · Zbl 0706.35127
[8] Cross, M.; Hohenberg, P., Pattern formation outside of equilibrium, Rev. Mod. Phys., 65, 851-1089 (1993) · Zbl 1371.37001
[9] Constantin, P.; Saut, J. C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1, 413-446 (1989) · Zbl 0667.35061
[10] Foias, C.; Temam, R., Gevrey class regularity for the solutions of the Navier-Stokes equation, J. Funct. Anal., 87, 359-369 (1989) · Zbl 0702.35203
[11] Ginibre, J.; Velo, G., The Cauchy problem in local spaces for the complex Ginzburg-Landau equation I, Compactness methods, Physica D., 95, 191-228 (1996) · Zbl 0889.35045
[12] Ginibre, J.; Velo, G., The Cauchy problem in local spaces for the complex Ginzburg-Landau equation II, Contraction Methods, Commun. Math. Phys., 187, 45-79 (1997) · Zbl 0889.35046
[13] Ginzburg, V.; Landau, L., On the theory of superconductivity, Zh. Eksp. Fiz., 20, 1064 (1950) · Zbl 1541.82017
[14] Giga, Y., Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 61, 186-212 (1986) · Zbl 0577.35058
[15] Guo, B. L.; Wang, B. X., Gevrey regularity and approximative inertial manifolds for the Ginzburg-Landau equation, DCDS, 2, 455-466 (1996) · Zbl 0948.35115
[16] Hörmander, L., Estimates for translation invariant operators in \(L^p\) spaces, Acta Math., 104, 93-139 (1960) · Zbl 0093.11402
[17] Huber, G.; Alstrom, P.; Bohr, T., Nucleation and transients at the onset of vortex turbulence, Phys. Rev. Lett., 69, 2380-2383 (1992)
[18] Kato, T.; Ponce, G., The Navier-Stokes equation with weak initial data, Internat. Math. Res. Note, 10, 435-444 (1994) · Zbl 0837.35116
[19] Kenig, C. E.; Ponce, G.; Vega, L., Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincare Anal. Nonlineaire, 10, 255-288 (1993) · Zbl 0786.35121
[20] Kenig, C. E.; Ponce, G.; Vega, L., Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math., 134, 489-545 (1998) · Zbl 0928.35158
[21] Lemarie-Rieusset, P. G., On the analyticity of mild solutions for the Navier-Stokes equations, C. R. Acad. Sci. Paris, Ser I, 330, 183-186 (2000) · Zbl 0942.35131
[22] C.D. Levermore, M. Oliver The complex Ginzburg-Landau equation as a model problem, Lectures in Applied Mathematics, vol. 31, 1996, pp. 141-190.; C.D. Levermore, M. Oliver The complex Ginzburg-Landau equation as a model problem, Lectures in Applied Mathematics, vol. 31, 1996, pp. 141-190. · Zbl 0845.35003
[23] Levermore, C. D.; Oliver, M., Distribution-valued initial data for the complex Ginzburg-Landau equation, Commun. Partial Differential Equations, 22, 39-48 (1997) · Zbl 0880.35110
[24] Nakamura, M.; Ozawa, T., Nonlinear Schrödinger equations in the Sobolev space of critical order, J. Funct. Anal., 155, 2, 364-380 (1998) · Zbl 0909.35126
[25] Newell, A.; Whitehead, J., Finite amplitude convection, J. Fluid Mech., 38, 279-303 (1969) · Zbl 0187.25102
[26] Strauss, W., Nonlinear scattering theory at low energy, J. Funct. Anal., 41, 110-133 (1981) · Zbl 0466.47006
[27] Stuart, J.; Di Prima, R., The Eckhaus and Benjamin-Feir resonance mechanisms, Proc. Roy. Soc. London Ser. A, 362, 27-41 (1978)
[28] Tao, T., Multilinear weighted convolution of \(L^2\) functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123, 839-908 (2001) · Zbl 0998.42005
[29] Triebel, H., Theory of Function Spaces (1983), Birkhäuser-Verlag: Birkhäuser-Verlag Basel · Zbl 0546.46028
[30] Wang, B., The Cauchy problem for critical and subcritical semi-linear parabolic equations in, \(L^r (I)\), Nonlinear Anal. Theory Methods Appl., 48, 747-764 (2002) · Zbl 1002.35057
[31] Wang, B., The limit behavior of solutions for the complex Ginzburg-Landau equation, Commun. Pure Appl. Math., 55, 481-508 (2002) · Zbl 1031.35138
[32] Wang, B., Exponential Besov spaces and their applications to certain evolution equations with dissipation, Comm. Pure Appl. Anal., 3, 883-919 (2004) · Zbl 1072.46023
[33] Weissler, F. B., Local existence and nonexistence for semilinear parabolic equations in \(L^p\), Indiana Math. J., 29, 79-102 (1980) · Zbl 0443.35034
[34] Weissler, F. B., Existence and nonexistence of global solutions for a semilinear heat equation, Israel Math. J., 39, 29-40 (1981) · Zbl 0476.35043
[35] Wu, J., The complex Ginzburg-Landau equation with data in Sobolev spaces of negative indices, Houston J. Math., 25, 387-397 (1999) · Zbl 0965.35156
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.