×

Space-like singularities of general relativity: a phantom menace? (English) Zbl 1500.83034

Summary: The big bang and the Schwarzschild singularities are space-like. They are generally regarded as the ‘final frontiers’ at which space-time ends and general relativity breaks down. We review the status of such space-like singularities from three increasingly more general perspectives. They are provided by (i) A reformulation of classical general relativity motivated by the Belinskii, Khalatnikov, Lifshitz conjecture on the behavior of the gravitational field near space-like singularities; (ii) The use of test quantum fields to probe the nature of these singularities; and, (iii) An analysis of the fate of these singularities in loop quantum gravity due to quantum geometry effects. At all three levels singularities turn out to be less menacing than one might a priori expect from classical general relativity. Our goal is to present an overview of the emerging conceptual picture and suggest lines for further work. In line with the Introduction to Current Research theme, we have made an attempt to make it easily accessible to all researchers in gravitational physics.

MSC:

83F05 Relativistic cosmology
83C75 Space-time singularities, cosmic censorship, etc.
81T20 Quantum field theory on curved space or space-time backgrounds
83C45 Quantization of the gravitational field
83E05 Geometrodynamics and the holographic principle
83-03 History of relativity and gravitational theory

References:

[1] Padmanabhan, T.; Narlikar, JV, Quantum conformal fluctuations in a singular space-time, Nature, 295, 677-678 (1982) · doi:10.1038/295677a0
[2] Ashtekar, A.; De Lorenzo, T.; Schneider, M., Probing the big bang with quantum fields, Adv. Theor. Math. Phys., 25, 7 (2021) · Zbl 1498.83049
[3] Ashtekar, A., Schneider, M.: Probing the Schwarzschild singularity with quantum fields (in preparation) · Zbl 1498.83049
[4] del Río, A.: Probing the big bang of open and closed universes with quantum fields (in preparation)
[5] Barnich, G.; Husain, V., Geometrical representation of Euclidean general relativity in the canonical formalism, Class. Quantum Gravity, 14, 1043-1058 (1997) · Zbl 0879.58086 · doi:10.1088/0264-9381/14/5/012
[6] Ashtekar, A.; Henderson, A.; Sloan, D., Hamiltonian general relativity and the Belinskii, Khalatnikov, Lifshitz conjecture, Class. Quantum Gravity, 26, 052001 (2009) · Zbl 1160.83302 · doi:10.1088/0264-9381/26/5/052001
[7] Ashtekar, A.; Henderson, A.; Sloan, D., A Hamiltonian formulation of the BKL conjecture, Phys. Rev. D, 83, 084024 (2011) · doi:10.1103/PhysRevD.83.084024
[8] Koslowski, TA; Mercati, F.; Sloan, D., Through the big bang: continuing Einstein’s equations beyond a cosmological singularity, Phys. Lett. B, 778, 339-343 (2018) · Zbl 1383.83235 · doi:10.1016/j.physletb.2018.01.055
[9] Mercati, F., Through the big bang in inflationary cosmology, JCAP, 10, 025 (2019) · Zbl 1515.83186 · doi:10.1088/1475-7516/2019/10/025
[10] Valdés-Meller, N., Revisiting gravity and crossing the singularity. Master’s Thesis. Scholars International Program, Permimeter Institute, Canada (2021)
[11] Ashtekar, A.; Pawlowski, T.; Singh, P., Quantum nature of the big bang, Phys. Rev. Lett., 96, 141301 (2006) · Zbl 1153.83417 · doi:10.1103/PhysRevLett.96.141301
[12] Ashtekar, A.; Pawlowski, T.; Singh, P., Quantum nature of the big bang: improved dynamics, Phys. Rev. D, 74, 084003 (2006) · Zbl 1197.83047 · doi:10.1103/PhysRevD.74.084003
[13] Ashtekar, A.; Singh, P., Loop quantum cosmology: a status report, Class. Quantum Gravity, 28, 213001 (2011) · Zbl 1230.83003 · doi:10.1088/0264-9381/28/21/213001
[14] Agullo, I.; Singh, P.; Ashtekar, A.; Pullin, J., Loop quantum cosmology, Loop Quantum Gravity: The First 30 Years (2017), Singapore: World Scientific, Singapore · Zbl 1378.83001
[15] Hawking, SW; Ellis, GFR, Large Scale Structure of Space-Time (1973), Cambridge: Cambridge UP, Cambridge · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[16] Ashtekar, A.; Lewandowski, J., Background independent quantum gravity: a status report, Class. Quantum Gravity, 21, 3004, R53-R152 (2004) · Zbl 1077.83017 · doi:10.1088/0264-9381/21/15/R01
[17] Rovelli, C., Quantum Gravity (2004), Cambrodge: Cambridge UP, Cambrodge · Zbl 1091.83001 · doi:10.1017/CBO9780511755804
[18] Thiemann, T., Introduction to Modern Canonical Quantum General Relativity (2007), Cambridge: Cambridge UP, Cambridge · Zbl 1129.83004 · doi:10.1017/CBO9780511755682
[19] Rovelli, C.; Vidotto, F., Covariant Loop Quantum Gravity (2014), Cambridge: Cambridge UP, Cambridge · Zbl 1432.81065 · doi:10.1017/CBO9781107706910
[20] Ashtekar, A.; Pullin, J., Loop Quantum Gravity: The First 30 Years (2017), Singapore: World Scientific, Singapore · Zbl 1367.83004
[21] Belinskii, VA; Khalatnikov, IM; Lifshitz, EM, Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys., 31, 525-573 (1970) · doi:10.1080/00018737000101171
[22] Berger, B., Numerical approaches to space-time singularities, Living Rev. Relativ., 5, 1, 1-59 (2002) · Zbl 1023.83003 · doi:10.12942/lrr-2002-1
[23] Garfinkle, D., Numerical simulations of generic singuarities, Phys. Rev. Lett., 93, 161101 (2004) · doi:10.1103/PhysRevLett.93.161101
[24] Weaver, M.; Isenberg, J.; Berger, B., Mixmaster behavior in inhomogeneous cosmological spacetimes, Phys. Rev. Lett., 80, 2984 (1998) · doi:10.1103/PhysRevLett.80.2984
[25] Anderson, L.; Rendall, A., Quiescent cosmological singularities, Commun. Math. Phys, 218, 479 (2001) · Zbl 0979.83036 · doi:10.1007/s002200100406
[26] Garfinkle, D., Numerical simulations of general gravitational singularities, Class. Quantum Gravity, 24, 295 (2007) · Zbl 1117.83084 · doi:10.1088/0264-9381/24/12/S19
[27] Saotome, R.; Akhoury, R.; Garfinkle, D., Examining gravitational collapse with test scalar fields, Class. Quantum Gravity, 27, 165019 (2010) · Zbl 1197.83080 · doi:10.1088/0264-9381/27/16/165019
[28] Ashtekar, A., New variables for classical and quantum gravity, Phys. Rev. Lett., 57, 2244-2247 (1986) · doi:10.1103/PhysRevLett.57.2244
[29] Ashtekar, A., A new Hamiltonian formulation of general relativity, Phys. Rev. D, 36, 1587-1603 (1987) · doi:10.1103/PhysRevD.36.1587
[30] Arnowitt, R., Deser, M., Misner, C.W.: Gravitation: Introduction to Current Research, Ch 7. ed. L. Witten, Wiley, New York (1962) · Zbl 0115.43103
[31] Uggla, C.; van Elst, H.; Wainwright, J.; Ellis, GFR, The past attractor in inhomogeneous cosmology, Phys. Rev. D, 68, 103502 (2003) · doi:10.1103/PhysRevD.68.103502
[32] D’Ambrosio, F.; Rovelli, C., How information crosses Schwarzschild’s central singulariy, Class. Quantum Gravity, 35, 215010 (2018) · Zbl 1431.83115 · doi:10.1088/1361-6382/aae499
[33] Wightman, A.S., Garding, L.: Fields as operator valued distributions in relativistic quantum theory Ark. Fys. 13, Nr. 13 (1964) · Zbl 0138.45401
[34] Schwartz, L.: Some applications of the theory of distributions. In: Lectures on Modern Mathematics, vol. I, pp. 23-58. Wiley, New York (1963) · Zbl 0126.11704
[35] Gel’fand, I., Shilov, G.: Generalized Functions, vol. 1. Gosudrstv. Izdat. Fiz-Mat. Lib, Moscow (1958); English translation: AMS Chelea Publication, Providence (2016) · Zbl 0091.11103
[36] Wald, RM, Quantum Field Theory in Curved Space-Times and Black Hole Thermodynamics (1994), Chicago: University of Chicago Press, Chicago · Zbl 0842.53052
[37] Fewster, C.J., Rejzner, K.: Algebraic quantum field theory—an introduction. In: Finster, F., Giulini, D., Kleiner, J., Tolksdorf, J. (eds.) Progress and Visions in Quantum Theory in View of Gravity-Bridging Foundations of Physics and Mathematics, pp. 1-62. Birkhäuser, Chem (2020). arXiv:1904.04051v2
[38] DeWitt, BS, Dynamical Theory of Groups and Fields (1965), New York: Gordon and Breach, New York · Zbl 0169.57101
[39] DeWitt, BS, Quantum field theory in curved space-time, Phys. Rep., 19, 295 (1975) · doi:10.1016/0370-1573(75)90051-4
[40] Christensen, SM, Vacuum expectation value of the stress tensor in an arbitrary curved background: the covariant point-separation method, Phys. Rev. D, 14, 2490 (1976) · doi:10.1103/PhysRevD.14.2490
[41] Christensen, SM, Regularization, renormalization, and covariant geodesic point separation, Phys. Rev. D, 17, 946 (1978) · doi:10.1103/PhysRevD.17.946
[42] Ashtekar, A.; Magnon, A., Quantum fields in curved space-times, Proc. R. Soc. Lond. A, 346, 375-394 (1975) · Zbl 0948.81612 · doi:10.1098/rspa.1975.0181
[43] Ford, LH; Parker, L., Infrared divergences in a class of Robertson-Walker universes, Phys. Rev. D, 16, 245-250 (1977) · doi:10.1103/PhysRevD.16.245
[44] Hofmann, S.; Schneider, M., Classical versus quantum completeness, Phys. Rev. D, 91, 125028 (2015) · doi:10.1103/PhysRevD.91.125028
[45] Ashtekar, A., Lewandowski, J.: Differential geometry on the space of connections using projective techniques Jour. Geo Phys. 17, 191-230 (1995) · Zbl 0851.53014
[46] Ashtekar, A.; Lewandowski, J.; Marolf, D.; Mourão, J.; Thiemann, T., Quantization of diffeomorphism invariant theories of connections with local degrees of freedom, J. Math. Phys., 36, 6456-6493 (1995) · Zbl 0856.58006 · doi:10.1063/1.531252
[47] Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593-622. Erratum: Nucl. Phys. B 456, 753 (1995) · Zbl 0925.83013
[48] Loll, R., The volume operator in discretized quantum gravity Phys, Rev. Lett., 75, 3048-3051 (1995) · Zbl 1020.83541 · doi:10.1103/PhysRevLett.75.3048
[49] Ashtekar, A.; Lewandowski, J., Quantum theory of geometry I: area operators, Class. Quantum Gravity, 14, A55-A81 (1997) · Zbl 0866.58077 · doi:10.1088/0264-9381/14/1A/006
[50] Ashtekar, A.; Lewandowski, J., Quantum theory of geometry II: volume operators, Adv. Theor. Math. Phys., 1, 997, 388-429 (1997) · Zbl 0903.58067 · doi:10.4310/ATMP.1997.v1.n2.a8
[51] Thiemann, T., A length operator for canonical quantum gravity, J. Math. Phys., 39, 3372-3392 (1998) · Zbl 1001.83023 · doi:10.1063/1.532445
[52] Bianchi, E., The length operator in loop quantum gravity, Nucl. Phys. B, 807, 591-624 (2009) · Zbl 1192.83019 · doi:10.1016/j.nuclphysb.2008.08.013
[53] Ashtekar, A.; Campiglia, M., On the uniqueness of kinematics of loop quantum cosmology, Class. Quantum Gravity, 29, 242001 (2012) · Zbl 1260.83037 · doi:10.1088/0264-9381/29/24/242001
[54] Engle, J.; Hanusch, M.; Thiemann, T., Uniqueness of the representation in homogeneous isotropic LQC, Commun. Math. Phys., 354, 231-246 (2017) · Zbl 1371.83070 · doi:10.1007/s00220-017-2881-2
[55] Ashtekar, A.; Corichi, A.; Singh, P., Robustness of key features of loop quantum cosmology, Phys. Rev. D, 77, 024046 (2008) · doi:10.1103/PhysRevD.77.024046
[56] Hartle, JB; Hawking, SW, Wave function of the universe, Phys. Rev. D, 28, 2960-2975 (1983) · Zbl 1370.83118 · doi:10.1103/PhysRevD.28.2960
[57] Taveras, V., LQC corrections to the Friedmann equations for a universe with a free scalar field, Phys. Rev. D, 78, 064072 (2008) · doi:10.1103/PhysRevD.78.064072
[58] Shtanov, Y.; Sahni, V., Bouncing braneworlds, Phys. Lett. B, 557, 1 (2003) · Zbl 1009.83068 · doi:10.1016/S0370-2693(03)00179-5
[59] Bojowald, M., Absence of singularity in loop quantum cosmology, Phys. Rev. Lett., 86, 5227-5230 (2001) · doi:10.1103/PhysRevLett.86.5227
[60] Ashtekar, A.; Campiglia, M.; Henderson, A., Path integrals and the WKB approximation in loop quantum cosmology, Phys. Rev. D, 82, 124043 (2010) · doi:10.1103/PhysRevD.82.124043
[61] Craig, D.; Singh, P., Consistent probabilities in loop quantum cosmology, Class. Quantum Gravity, 30, 205008 (2013) · Zbl 1276.83055 · doi:10.1088/0264-9381/30/20/205008
[62] Navascués, BE; Martin-Benito, M.; Marugán, GAM, Modified FRW cosmologies arising from states of the hybrid quantum Gowdy model, Phys. Rev. D, 92, 024007 (2015) · doi:10.1103/PhysRevD.92.024007
[63] Zhang, X.; Ma, Y.; Artymowski, M., Loop quantum Brans-Dicke cosmology, Phys. Rev. D, 8, 084024 (2013) · doi:10.1103/PhysRevD.87.084024
[64] Ashtekar, A.; Kaminski, W.; Lewandowski, J., Quantum field theory on a cosmological, quantum space-time, Phys. Rev. D, 79, 064030 (2009) · doi:10.1103/PhysRevD.79.064030
[65] Ashtekar, A.; Barrau, A., Loop quantum cosmology: from pre-inflationary dynamics to observations, Class. Quantum Gravity, 32, 234001 (2015) · Zbl 1329.83203 · doi:10.1088/0264-9381/32/23/234001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.