Skip to main content
Log in

Space-like singularities of general relativity: A phantom menace?

  • Invited Report: Introduction to Current Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The big bang and the Schwarzschild singularities are space-like. They are generally regarded as the ‘final frontiers’ at which space–time ends and general relativity breaks down. We review the status of such space-like singularities from three increasingly more general perspectives. They are provided by (i) A reformulation of classical general relativity motivated by the Belinskii, Khalatnikov, Lifshitz conjecture on the behavior of the gravitational field near space-like singularities; (ii) The use of test quantum fields to probe the nature of these singularities; and, (iii) An analysis of the fate of these singularities in loop quantum gravity due to quantum geometry effects. At all three levels singularities turn out to be less menacing than one might a priori expect from classical general relativity. Our goal is to present an overview of the emerging conceptual picture and suggest lines for further work. In line with the Introduction to Current Research theme, we have made an attempt to make it easily accessible to all researchers in gravitational physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data availability

This is a mathematical physics paper. No data was collected or used.

Notes

  1. The interesting case of a massless scalar field is discussed in [10] for FLRW cosmologies using the framework summarized here, and in [8] for Bianchi IX models, using a technically different approach that also leads to a well-defined evolution through the big-bang.

  2. This strategy is similar to that used in discussions of the BKL conjecture where one divides geometric fields by the trace K of the extrinsic curvature which is expected to diverge at the singularity to obtain the so-called “Hubble normalized fields" (see, e.g., [31]). A key difference is that whereas the focus in those treatments is on differential equations, here the focus is on a Hamiltonian framework that can serve as a point of departure for quantum theory.

  3. Details on results summarized below can be found in [7]. The operator \(D_i := E^a_i D_a\) is linear and satisfies the Leibnitz rule. Since \(D_a\) is determined by \(q_{ab}\), it ignores internal indices. Hence \(D_i\) also treats fields with internal indices as scalars. Note however that, given a function f on \(\mathbb {M}\), \(D_i f\) does not yield the exterior derivative df. Thus, \(D_i\) is not a connection on \(\mathbb {M}\). If we were to formally treat as a connection, it would have torsion determined by \(C_i{}^j\): \(D_{[i} D_{j]} f = -{T}^k_{\;\;ij} D_k f \) where \({T}^k_{\;\;ij} = \epsilon _{kl[i} C_{j]}^{\;\;l}\) [5, 7].

  4. By contrast, evolution equations of the ADM variables \((q_{ab}, P^{ab})\) as well as their triad analogs \((E^a_i, K_a^i)\) involve non-polynomial functions of these variables and, furthermore \(P^{ab}\) and \(K_a^i\) themselves diverge at the FLRW big bang.

  5. Sometime ago a similar result was obtained using Schrödinger picture for time evolution [44]. However, that reasoning relies on formal arguments that do not do full justice to the difficult quantum field theoretic issues associated with an infinite number of degrees of freedom. These are adequately handled in [3], along the lines of [2].

References

  1. Padmanabhan, T., Narlikar, J.V.: Quantum conformal fluctuations in a singular space–time. Nature 295, 677–678 (1982)

    Article  ADS  Google Scholar 

  2. Ashtekar, A., De Lorenzo, T., Schneider, M.: Probing the big bang with quantum fields. Adv. Theor. Math. Phys. 25, 7 (2021). arXiv:2107.08506

    Google Scholar 

  3. Ashtekar, A., Schneider, M.: Probing the Schwarzschild singularity with quantum fields (in preparation)

  4. del Río, A.: Probing the big bang of open and closed universes with quantum fields (in preparation)

  5. Barnich, G., Husain, V.: Geometrical representation of Euclidean general relativity in the canonical formalism. Class. Quantum Gravity 14, 1043–1058 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Ashtekar, A., Henderson, A., Sloan, D.: Hamiltonian general relativity and the Belinskii, Khalatnikov, Lifshitz conjecture. Class. Quantum Gravity 26, 052001 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ashtekar, A., Henderson, A., Sloan, D.: A Hamiltonian formulation of the BKL conjecture. Phys. Rev. D 83, 084024 (2011)

    Article  ADS  Google Scholar 

  8. Koslowski, T.A., Mercati, F., Sloan, D.: Through the big bang: continuing Einstein’s equations beyond a cosmological singularity. Phys. Lett. B 778, 339–343 (2018)

    Article  ADS  MATH  Google Scholar 

  9. Mercati, F.: Through the big bang in inflationary cosmology. JCAP 10, 025 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Valdés-Meller, N., Revisiting gravity and crossing the singularity. Master’s Thesis. Scholars International Program, Permimeter Institute, Canada (2021)

  11. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ashtekar, A., Singh, P.: Loop quantum cosmology: a status report. Class. Quantum Gravity 28, 213001 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Agullo, I., Singh, P.: Loop quantum cosmology. In: Ashtekar, A., Pullin, J. (eds.) Loop Quantum Gravity: The First 30 Years. World Scientific, Singapore (2017)

    Google Scholar 

  15. Hawking, S.W., Ellis, G.F.R.: Large Scale Structure of Space–Time. Cambridge UP, Cambridge (1973)

    Book  MATH  Google Scholar 

  16. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21(3004), R53–R152 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Rovelli, C.: Quantum Gravity. Cambridge UP, Cambrodge (2004)

    Book  MATH  Google Scholar 

  18. Thiemann, T.: Introduction to Modern Canonical Quantum General Relativity. Cambridge UP, Cambridge (2007)

    Book  MATH  Google Scholar 

  19. Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity. Cambridge UP, Cambridge (2014)

    Book  MATH  Google Scholar 

  20. Ashtekar, A., Pullin, J. (eds.): Loop Quantum Gravity: The First 30 Years. World Scientific, Singapore (2017)

    MATH  Google Scholar 

  21. Belinskii, V.A., Khalatnikov, I.M., Lifshitz, E.M.: Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 31, 525–573 (1970)

    Article  ADS  Google Scholar 

  22. Berger, B.: Numerical approaches to space-time singularities. Living Rev. Relativ. 5(1), 1–59 (2002)

    Article  ADS  MATH  Google Scholar 

  23. Garfinkle, D.: Numerical simulations of generic singuarities. Phys. Rev. Lett. 93, 161101 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. Weaver, M., Isenberg, J., Berger, B.: Mixmaster behavior in inhomogeneous cosmological spacetimes. Phys. Rev. Lett. 80, 2984 (1998)

    Article  ADS  Google Scholar 

  25. Anderson, L., Rendall, A.: Quiescent cosmological singularities. Commun. Math. Phys 218, 479 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Garfinkle, D.: Numerical simulations of general gravitational singularities. Class. Quantum Gravity 24, 295 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Saotome, R., Akhoury, R., Garfinkle, D.: Examining gravitational collapse with test scalar fields. Class. Quantum Gravity 27, 165019 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244–2247 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ashtekar, A.: A new Hamiltonian formulation of general relativity. Phys. Rev. D 36, 1587–1603 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  30. Arnowitt, R., Deser, M., Misner, C.W.: Gravitation: Introduction to Current Research, Ch 7. ed. L. Witten, Wiley, New York (1962)

  31. Uggla, C., van Elst, H., Wainwright, J., Ellis, G.F.R.: The past attractor in inhomogeneous cosmology. Phys. Rev. D 68, 103502 (2003)

    Article  ADS  Google Scholar 

  32. D’Ambrosio, F., Rovelli, C.: How information crosses Schwarzschild’s central singulariy. Class. Quantum Gravity 35, 215010 (2018)

    Article  ADS  MATH  Google Scholar 

  33. Wightman, A.S., Garding, L.: Fields as operator valued distributions in relativistic quantum theory Ark. Fys. 13, Nr. 13 (1964)

  34. Schwartz, L.: Some applications of the theory of distributions. In: Lectures on Modern Mathematics, vol. I, pp. 23–58. Wiley, New York (1963)

  35. Gel’fand, I., Shilov, G.: Generalized Functions, vol. 1. Gosudrstv. Izdat. Fiz-Mat. Lib, Moscow (1958); English translation: AMS Chelea Publication, Providence (2016)

  36. Wald, R.M.: Quantum Field Theory in Curved Space–Times and Black Hole Thermodynamics. University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  37. Fewster, C.J., Rejzner, K.: Algebraic quantum field theory—an introduction. In: Finster, F., Giulini, D., Kleiner, J., Tolksdorf, J. (eds.) Progress and Visions in Quantum Theory in View of Gravity-Bridging Foundations of Physics and Mathematics, pp. 1–62. Birkhäuser, Chem (2020). arXiv:1904.04051v2

  38. DeWitt, B.S.: Dynamical Theory of Groups and Fields. Gordon and Breach, New York (1965)

    MATH  Google Scholar 

  39. DeWitt, B.S.: Quantum field theory in curved space–time. Phys. Rep. 19, 295 (1975)

    Article  ADS  Google Scholar 

  40. Christensen, S.M.: Vacuum expectation value of the stress tensor in an arbitrary curved background: the covariant point-separation method. Phys. Rev. D 14, 2490 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  41. Christensen, S.M.: Regularization, renormalization, and covariant geodesic point separation. Phys. Rev. D 17, 946 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  42. Ashtekar, A., Magnon, A.: Quantum fields in curved space–times. Proc. R. Soc. Lond. A 346, 375–394 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Ford, L.H., Parker, L.: Infrared divergences in a class of Robertson–Walker universes. Phys. Rev. D 16, 245–250 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  44. Hofmann, S., Schneider, M.: Classical versus quantum completeness. Phys. Rev. D 91, 125028 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  45. Ashtekar, A., Lewandowski, J.: Differential geometry on the space of connections using projective techniques Jour. Geo Phys. 17, 191–230 (1995)

  46. Ashtekar, A., Lewandowski, J., Marolf, D., Mourão, J., Thiemann, T.: Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J. Math. Phys. 36, 6456–6493 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593–622. Erratum: Nucl. Phys. B 456, 753 (1995)

  48. Loll, R.: The volume operator in discretized quantum gravity Phys. Rev. Lett. 75, 3048–3051 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Ashtekar, A., Lewandowski, J.: Quantum theory of geometry I: area operators. Class. Quantum Gravity 14, A55–A81 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Ashtekar, A., Lewandowski, J.: Quantum theory of geometry II: volume operators. Adv. Theor. Math. Phys. 1(997), 388–429 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Thiemann, T.: A length operator for canonical quantum gravity. J. Math. Phys. 39, 3372–3392 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Bianchi, E.: The length operator in loop quantum gravity. Nucl. Phys. B 807, 591–624 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Ashtekar, A., Campiglia, M.: On the uniqueness of kinematics of loop quantum cosmology. Class. Quantum Gravity 29, 242001 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Engle, J., Hanusch, M., Thiemann, T.: Uniqueness of the representation in homogeneous isotropic LQC. Commun. Math. Phys. 354, 231–246 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Ashtekar, A., Corichi, A., Singh, P.: Robustness of key features of loop quantum cosmology. Phys. Rev. D 77, 024046 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  56. Hartle, J.B., Hawking, S.W.: Wave function of the universe. Phys. Rev. D 28, 2960–2975 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Taveras, V.: LQC corrections to the Friedmann equations for a universe with a free scalar field. Phys. Rev. D 78, 064072 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  58. Shtanov, Y., Sahni, V.: Bouncing braneworlds. Phys. Lett. B 557, 1 (2003)

    Article  ADS  MATH  Google Scholar 

  59. Bojowald, M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227–5230 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  60. Ashtekar, A., Campiglia, M., Henderson, A.: Path integrals and the WKB approximation in loop quantum cosmology. Phys. Rev. D 82, 124043 (2010)

    Article  ADS  Google Scholar 

  61. Craig, D., Singh, P.: Consistent probabilities in loop quantum cosmology. Class. Quantum Gravity 30, 205008 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Navascués, B.E., Martin-Benito, M., Marugán, G.A.M.: Modified FRW cosmologies arising from states of the hybrid quantum Gowdy model. Phys. Rev. D 92, 024007 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  63. Zhang, X., Ma, Y., Artymowski, M.: Loop quantum Brans–Dicke cosmology. Phys. Rev. D 8, 084024 (2013)

    Article  ADS  Google Scholar 

  64. Ashtekar, A., Kaminski, W., Lewandowski, J.: Quantum field theory on a cosmological, quantum space–time. Phys. Rev. D 79, 064030 (2009)

    Article  ADS  Google Scholar 

  65. Ashtekar, A., Barrau, A.: Loop quantum cosmology: from pre-inflationary dynamics to observations. Class. Quantum Gravity 32, 234001 (2015)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF Grants PHY-1806356, the Eberly Chair funds of Penn State, and the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Ashtekar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Topical Collection: In Memory of Professor T Padmanabhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashtekar, A., del Río, A. & Schneider, M. Space-like singularities of general relativity: A phantom menace?. Gen Relativ Gravit 54, 45 (2022). https://doi.org/10.1007/s10714-022-02932-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02932-5

Keywords

Navigation