×

A novel hybrid technique to decompose in-plane thermoelastic displacement fields into thermal and structural displacement fields. (English) Zbl 1500.74015

Summary: Structural health monitoring techniques assess structural responses by retrieving total displacement fields encompassing thermal and structural displacement fields. However, techniques to decompose a total displacement field into individual displacement fields – thermal- and structural-load induced fields – have not been explored. To address this research gap, the present work proposes and demonstrates a novel hybrid technique – coupling a low-fidelity FEM and an analytical technique formulated using complex variables. The technique incorporates partial coarse-mesh FEM boundary data with field variables expressions – presented as Laurent series – to compute unknown constants in the series. The technique is illustrated for thermoelastic problems including circular and elliptical rings and a plate with a hole. On the other hand, non-thermoelastic problems of practical utility – a special case of thermoelastic problems – are presented to demonstrate the versatility of the technique. The individual decomposed displacement fields are plotted as contour plots over the domains and are corroborated with high-fidelity FEM. \(L^2\) norms indicate a very good correspondence for thermoelastic problems, indicating the efficacy of the technique. The non-thermoelastic cases show higher deviation but within reasonable limits. Subsequently, the extension of the technique to experiments and evaluation of the stress fields are briefly discussed.

MSC:

74F05 Thermal effects in solid mechanics
74B05 Classical linear elasticity
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
74S70 Complex-variable methods applied to problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Cerracchio, P.; Gherlone, M.; Tessler, A., Real-time displacement monitoring of a composite stiffened panel subjected to mechanical and thermal loads, Meccanica, 50, 10, 2487-2496 (2015) · doi:10.1007/s11012-015-0146-8
[2] Wang, X.; Si, C.; Wang, Z.; Li, Y., Displacement field reconstruction of structures under thermal and mechanical loading environment, Aerospace Sci. Technol., 117, 106914 (2021) · doi:10.1016/j.ast.2021.106914
[3] Oberg, MB; de Oliveira, DF; Goulart, JN; Anflor, C., A novel to perform a thermoelastic analysis using digital image correlation and the boundary element method, Int. J. Mech. Mater. Eng., 15, 1, 1-13 (2020) · doi:10.1186/s40712-019-0115-4
[4] Nowak, M.; Maj, M., Determination of coupled mechanical and thermal fields using 2D digital image correlation and infrared thermography: Numerical procedures and results, Arch Civil Mech Eng, 18, 2, 630-644 (2018) · doi:10.1016/j.acme.2017.10.005
[5] Chao, CK; Shen, MH; Fung, CK, On multiple circular inclusions in plane thermoelasticity, Int. J Solids Struct, 34, 15, 1873-1892 (1997) · Zbl 0944.74519 · doi:10.1016/S0020-7683(96)00123-0
[6] Hasebe, N.; Wang, X., Complex variable method for thermal stress problem, J. Thermal Stress., 28, 6-7, 595-648 (2005) · doi:10.1080/01495730590932706
[7] Sadd, MH, Elasticity: Theory, Applications, and Numerics (2009), Cambridge: Academic Press, Cambridge
[8] Chao, CK; Shen, MH, On bonded circular inclusions in plane thermoelasticity, J. Appl. Mech., 64, 4, 1000-1004 (1997) · Zbl 0900.73078 · doi:10.1115/1.2788962
[9] Zhu, ZH; Meguid, SA, On the thermoelastic stresses of multiple interacting inhomogeneities, Int. J. Solids Struct., 37, 16, 2313-2330 (2000) · Zbl 0991.74023 · doi:10.1016/S0020-7683(98)00342-4
[10] Xiao, Ws; Xie, C.; Liu, Yw, Interaction between heat dipole and circular interfacial crack, Appl. Math. Mech., 30, 10, 1221-1232 (2009) · Zbl 1177.74339 · doi:10.1007/s10483-009-1002-x
[11] Wang, C-H; Chao, C-K, On perturbation solutions for nearly circular inclusion problems in plane thermoelasticity, J. Appl. Mech., 69, 1, 36-44 (2002) · Zbl 1110.74737 · doi:10.1115/1.1410367
[12] Yoshikawa, K.; Hasebe, N., Heat source in infinite plane with elliptic rigid inclusion and hole, J. Eng. Mech., 125, 6, 684-691 (1999)
[13] Timoshenko, SP; Goodier, JN, Theory of Elasticity (1970), New York: McGraw-Hill, New York · Zbl 0266.73008
[14] Muskhelishvili, NI, Some Basic Problems of the Mathematical Theory of Elasticity (2013), Berlin: Springer Science & Business Media, Berlin
[15] Barber, JR, Solid Mechanics and its Applications, Elasticity (2002), Dordrecht: Kluwer, Dordrecht · Zbl 1068.74001
[16] Saada, AS, Elasticity: Theory and Applications, Revised and Updated (2009), Fort Lauderdale: J. Ross Publishing, Fort Lauderdale
[17] Thube, YS; Lohit, SK; Gotkhindi, TP, A coupled analytical-FE hybrid approach for elastostatics, Meccanica, 55, 11, 2235-2262 (2020) · doi:10.1007/s11012-020-01254-7
[18] Isida, M.; Igawa, H., Analysis of a zig-zag array of circular holes in an infinite solid under uniaxial tension, Int. J. Solids Struct., 27, 7, 849-864 (1991) · doi:10.1016/0020-7683(91)90020-G
[19] Isida, M.; Igawa, H., Analysis of a zig-zag array of circular inclusions in a solid under uniaxial tension, Int. J. Solids Struct., 27, 12, 1515-1535 (1991) · doi:10.1016/0020-7683(91)90075-Q
[20] Qin, YX; Xie, WT; Ren, HP; Li, X., Crane hook stress analysis upon boundary interpolated reproducing Kernel particle method, Eng. Anal. Bound. Elements, 63, 74-81 (2016) · Zbl 1403.65221 · doi:10.1016/j.enganabound.2015.11.006
[21] Thube, Y.S., Lohit, S.K., Gotkhindi, T.P.: Stress analysis using complex variable-based analytical-FEM hybrid approach. Recent Adv. Comput. Exp. Mech I, 397-412 (2022)
[22] Pan, B.; Qian, K.; Xie, H.; Asundi, A., Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Measure. Sci. Technol., 20, 6, 062001 (2009) · doi:10.1088/0957-0233/20/6/062001
[23] Khaja, AA; Matthys, DR; Rowlands, RE, Determining all displacements, strains and stresses full-field from measured values of a single displacement component, Exp. Mech., 54, 3, 443-455 (2014) · doi:10.1007/s11340-013-9818-2
[24] Paneerselvam, S.; Samad, WA; Venkatesh, R.; Song, KW; El-Hajjar, RF; Rowlands, RE, Displacement-based experimental stress analysis of a circularly-perforated asymmetrical isotropic structure, Exp. Mech., 57, 1, 129-142 (2017) · doi:10.1007/s11340-016-0218-2
[25] Kalaycioglu, B.; Alshaya, A.; Rowlands, R., Experimental stress analysis of an arbitrary geometry containing irregularly shaped hole, Strain, 55, 3, e12306 (2019) · doi:10.1111/str.12306
[26] Lekhnitskii, SG, Theory of Elasticity of an Anisotropic Body (1981), Moscow: Mir Publishers, Moscow · Zbl 0467.73011
[27] Sendeckyj, GP, Some topics in anisotropic elasticity, Comp. Mater., 7, 1-48 (2016)
[28] Ukadgaonker, VG, Theory of Elasticity and Fracture Mechanics (2015), New Delhi: PHI Learning Pvt. Ltd., New Delhi
[29] Hou, PF; Jiang, HY; Li, QH, Three-dimensional steady-state general solution for isotropic thermoelastic materials with applications I: general solutions, J. Thermal Stress., 36, 7, 727-747 (2013) · doi:10.1080/01495739.2013.788903
[30] Chen, WQ; Zhu, J.; Li, XY, General solutions for elasticity of transversely isotropic materials with thermal and other effects: a review, J. Thermal Stress., 42, 1, 90-106 (2019) · doi:10.1080/01495739.2018.1527736
[31] Gao, XL; Rowlands, RE, Hybrid method for stress analysis of finite three-dimensional elastic components, Int. J. Solids Struct., 37, 19, 2727-2751 (2000) · Zbl 0992.74077 · doi:10.1016/S0020-7683(99)00111-0
[32] Jafari, M.; Jafari, M., Effect of uniform heat flux on stress distribution around a triangular hole in anisotropic infinite plates, J. Thermal Stress., 41, 6, 726-747 (2018) · doi:10.1080/01495739.2018.1428504
[33] Jafari, M.; Jafari, M., Effect of hole geometry on the thermal stress analysis of perforated composite plate under uniform heat flux, J. Comp. Mater., 53, 8, 1079-1095 (2019) · doi:10.1177/0021998318795279
[34] Tarn, JQ; Wang, YM, Thermal stresses in anisotropic bodies with a hole or a rigid inclusion, J. Thermal Stress., 16, 4, 455-471 (1993) · doi:10.1080/01495739308946240
[35] Rasouli, M.; Jafari, M., Thermal stress analysis of infinite anisotropic plate with elliptical hole under uniform heat flux, J. Thermal Stress., 39, 11, 1341-1355 (2016) · doi:10.1080/01495739.2016.1216038
[36] Chao, CK; Shen, MH, Thermal stresses in a generally anisotropic body with an elliptic inclusion subject to uniform heat flow, J. Appl. Mech., 65, 1, 51-58 (1998) · doi:10.1115/1.2789045
[37] Tauchert, TR, A review: quasistatic thermal stresses in anisotropic elastic bodies, with applications to composite materials, Acta Mech., 23, 1, 113-135 (1975) · Zbl 0322.73008 · doi:10.1007/BF01177673
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.