Skip to main content
Log in

Displacement-Based Experimental Stress Analysis of a Circularly-Perforated Asymmetrical Isotropic Structure

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper demonstrates the ability to determine the individual full-field components of stress, strain and displacement in finite asymmetrical engineering structures from recorded values of a single displacement component while not necessitating differentiation of the measured displacement data; a process which can be ill-conditioned and adversely influenced by data noise and quality. While the present approach of processing recorded displacements with a stress function is not new, previous cases have been restricted to symmetrical scenarios. Full-field displacements are measured here using the digital image correlation (DIC) method. As well as satisfying load equilibrium, the experimental results agree with those predicted using the finite element method (FEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a0, b0, c0, A0, a1, c1, d1, a ´ 1, c ´ 1, d ´ 1, an, bn, cn, dn, a ´ n, b ´ n, c ´ n, and d ´ n :

Airy coefficients

[A]:

Airy matrix

B:

Load offset distance

{c}:

Airy coefficient column matrix

{d}:

Airy input data column matrix

{d }:

Reconstructed {d} vector

E:

Young’s modulus

k :

Number of Airy coefficients

L:

Length

m :

Number of experimental input data

N:

Terminating number

r :

Radial distance (Polar coordinate)

u :

Horizontal displacement

u r :

Radial direction displacement

u θ :

Hoop direction displacement

v :

Vertical displacement

Δ :

Change

ε:

Strain

θ :

Angle (Polar coordinate)

ν:

Poisson’s ratio

σ:

Stress

φ:

Airy stress function

\( \mathit{\nabla} \) 4 :

Biharmonic operator

References

  1. Khaja AA, Matthys DR, Rowlands RE (2014) Determining all displacements, strains and stresses full-field from measured values of a single displacement component. Exp Mech 54(3):443–455

    Article  Google Scholar 

  2. Samad WA, Rowlands RE (2012) Nondestructive full-field stress analysis of a finite structure containing an elliptical hole using digital image correlation, ISEM-ACEM-SEM-7th ISEM2012-Taipei Conference on Experimental Mechanics, Taipei, Taiwan

  3. Samad WA, Rowlands RE (2013) Stress analysis of a metal-plate-connection in a beam under three-point-bending using digital image correlation, SEM Meeting, Lombard (Chicago), IL

  4. Paneerselvan S (2014) Full-Field stress analysis of perforated asymmetrical structures from recorded values of a single displacement component, MS Thesis, University of Wisconsin–Madison, Madison, WI

  5. Leong M, Overgaard LCT, Thomsen OT, Lund E, Daniel IM (2012) Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades. Compos Struct 94:768–778

    Article  Google Scholar 

  6. Shina M, Tortorellia DA, Noratob JA (2015) Optimal shape design of axisymmetric structures subject to asymmetric loading. Comput Methods Appl Mech Eng 293:283–305

    Article  MathSciNet  Google Scholar 

  7. Soutas-Little R (1998) Elasticity. Dover Publications, Mineola, New York

    Google Scholar 

  8. Rowlands RE, Liber T, Daniel IM, Rose PG (1974) Holographic stress analysis of composite plates. AIAA J 12(7):903–908

    Article  Google Scholar 

  9. Rowlands RE, Jensen JA, Winters KD (1978) Differentiation along arbitrary orientations. Exp Mech 18(3):81–86

    Article  Google Scholar 

  10. Rowlands RE, Winters KD, Jensen JA (1978) Full-Field numerical differentiation of photomechanical information. J Strain Anal 13(3):177–183

    Article  Google Scholar 

  11. Segalman DJ, Woyak DB, Rowlands RE (1979) Smooth spline-like finite-element differentiation of full field experimental data over arbitrary geometry. Exp Mech 19(12):429–437

    Article  Google Scholar 

  12. Feng Z, Rowlands RE (1987) Continuous full-field representation and differentiation of two- and three-dimensional experimental vector data using finite-element concepts. Comput Struct 26(6):979–990

    Article  Google Scholar 

  13. Rowlands RE (2004) Hybridizing moiré with analytical and numerical techniques: differentiating moiré measured displacements to obtain strains, Handbook of Moiré Measurement. In: Walker CA (ed) Chapter 7.2.1, Institute of Physics, (Series in Optics & Optoelectronics), Bristol and Philadelphia, p 263–267

  14. Orozco R, Lopez ID, Rowlands RE, Osswald T (2009) Stress analysis of 2-D and 3-D pin-joined composite laminate plates using radial basis functions method, ANTEC-Conference Proceedings. Chicago, IL. June 22–24

  15. Samad WA, Khaja AA, Yang CC, Rowlands RE (2013) Spatial and temporal derivatives of measured displacements, BSSM 9th International Conference on Advances in Experimental Mechanics, Cardiff, Wales

  16. Samad WA, Khaja AA, Matthys DR, Rowlands RE (2013) Full-field recorded displacements and their derivatives, International Conference on Computational & Experimental Engineering and Sciences: Recent Advances in Whole-Field Displacement Measurement Techniques (in honor of Prof. D. Post), Seattle

  17. Moulart R, Rotinat R (2014) On the use of a penalized least squares method to process kinematic full-field measurements. Meas Sci Technol 25(7):1–15

    Article  Google Scholar 

  18. Yoneyama S, Arikawa S, Kurosu Y (2015) Evaluating thermal stresses and strains from measured displacements using an experimental-numerical hybrid method. Adv Optical Methods Exp Mech Costa Mesa CA 3:103–110

    Google Scholar 

  19. Samad WA, Khaja AA, Kaliyanda AR, Rowlands RE (2014) Hybrid thermoelastic stress analysis of a pinned joint. Exp Mech 54(4):515–525

    Article  Google Scholar 

  20. Boresi AP (1965) Elasticity in engineering mechanics, Prentice Hall

Download references

Acknowledgments

This research was partially supported by the Hyundai Motor Company, Korea. The technical assistance of A. A. Khaja and I. V. Ilapogu is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Samad.

Appendix

Appendix

From equations. (3) and (4) and Hooke’s Law, one obtains the following radial and tangential components of strain [4],

$$ {\in}_{rr}=\frac{1}{E}\left[\begin{array}{l}\left(\left(\frac{1}{r^2}-\frac{3}{2}\frac{r}{R^3}\right)\cdot \left(1+v\right)+\left(\frac{r^3}{2\cdot {R}^5}\right)\cdot \left(1+5\cdot v\right)\right)\cdot {b}_0\\ {}+\left(2\cdot \left(1-v\right)-\frac{3\cdot r}{R}\cdot \left(1+v\right)+\frac{r^3}{R^3}\cdot \left(1+5\cdot v\right)\right)\cdot {c}_0\\ {}+\left(\frac{r\cdot \left(1+v\right)}{2\cdot {R}^3}-\frac{r^3\cdot \left(1+5\cdot v\right)}{2\cdot {R}^5}\right)\cdot \tan \left(3\cdot \theta \right)\cdot {A}_0\\ {}+\left(-\frac{2\cdot {R}^4\cdot \left(1+v\right)}{r^3}+2\cdot r\cdot \left(1-3\cdot v\right)\right)\cdot \sin \left(\theta \right)\cdot {d}_1^{\prime}\\ {}+\left(-\frac{2\cdot {R}^4\cdot \left(1+v\right)}{r^3}+2\cdot r\cdot \left(1-3\cdot v\right)\right)\cdot \cos \left(\theta \right)\cdot {d}_1\\ {}+\left(3\cdot {R}^2\cdot \left(1+v\right)-3\cdot {R}^6\cdot {r}^{-4}\cdot \left(1+v\right)-12\cdot {r}^2\cdot v\right)\cdot \sin \left(2\cdot \theta \right)\cdot {b}_2^{\prime}\\ {}+\left(\left({R}^{-2}+3\cdot {R}^2\cdot {r}^{-4}\right)\cdot \left(1+v\right)-4\cdot {r}^{-2}\right)\cdot \sin \left(2\cdot \theta \right)\cdot {d}_2^{\prime}\\ {}+\left(\frac{24\cdot r\cdot \left(1+v\right)}{R^6}-\frac{12\cdot {r}^3}{R^8}\left(1+5\cdot v\right)-\frac{12}{r^5}\left(1+v\right)\right)\cdot \sin \left(3\cdot \theta \right)\cdot {c}_3^{\prime}\\ {}+\left(\frac{18\cdot r\cdot \left(1+v\right)}{R^4}-\frac{8\cdot {r}^3}{R^6}\left(1+5\cdot v\right)-\frac{2}{r^3}\left(5+v\right)\right)\cdot \sin \left(3\cdot \theta \right)\cdot {d}_3^{\prime}\\ {}+{\displaystyle \sum_{n=4,5,6}^N\left[\left(\begin{array}{l}\left({n}^2-1\right)\cdot {r}^{\left(n-2\right)}\cdot {R}^2\cdot \left(1+v\right)-\left(n+1\right)\cdot {r}^n\cdot \left(n-2+n\cdot v+2\cdot v\right)\\ {}-\left(n+1\right)\cdot {r}^{-\left(n+2\right)}\cdot {R}^{\left(2\cdot n+2\right)}\cdot \left(1+v\right)\end{array}\right)\cdot \sin \left(n\cdot \theta \right)\cdot {b}_n^{\prime}\right]}\\ {}+{\displaystyle \sum_{n=4,5,6}^N\left[\left(\begin{array}{l}\left(n-1\right)\cdot {r}^{\left(n-2\right)}\cdot {R}^{-\left(2\cdot n-2\right)}\cdot \left(1+v\right)-\left(1-{n}^2\right)\cdot {r}^{-\left(n+2\right)}\cdot {R}^2\cdot \left(1+v\right)\\ {}-\left(n-1\right)\cdot {r}^{-(n)}\left(n+2+n\cdot v-2\cdot v\right)\end{array}\right)\cdot \sin \left(n\cdot \theta \right)\cdot {d}_n^{\prime}\right]}\\ {}+{\displaystyle \sum_{n=2,3,4}^N\left[\left(\begin{array}{l}\left({n}^2-1\right)\cdot {r}^{\left(n-2\right)}\cdot {R}^2\cdot \left(1+v\right)-\left(n+1\right)\cdot {r}^n\cdot \left(n-2+n\cdot v+2\cdot v\right)\\ {}-\left(n+1\right)\cdot {r}^{-\left(n+2\right)}\cdot {R}^{\left(2\cdot n+2\right)}\cdot \left(1+v\right)\end{array}\right)\cdot \cos \left(n\cdot \theta \right)\cdot {b}_n\right]}\\ {}+{\displaystyle \sum_{n=2,3,4}^N\left[\left(\begin{array}{l}\left(n-1\right)\cdot {r}^{\left(n-2\right)}\cdot {R}^{-\left(2\cdot n-2\right)}\cdot \left(1+v\right)-\left(1-{n}^2\right)\cdot {r}^{-\left(n+2\right)}\cdot {R}^2\cdot \left(1+v\right)\\ {}-\left(n-1\right)\cdot {r}^{-(n)}\left(n+2+n\cdot v-2\cdot v\right)\end{array}\right)\cdot \cos \left(n\cdot \theta \right)\cdot {d}_n\right]}\end{array}\right] $$
(A1)
$$ {\in}_{\theta \theta }=\frac{1}{E}\left[\begin{array}{l}\left(\left(-\frac{1}{r^2}+\frac{3}{2}\frac{r}{R^3}\right)\cdot \left(1+v\right)-\left(\frac{r^3}{2\cdot {R}^5}\right)\cdot \left(5+v\right)\right)\cdot {b}_0\\ {}+\left(2\cdot \left(1-v\right)+\frac{3\cdot r}{R}\cdot \left(1+v\right)-\frac{r^3}{R^3}\cdot \left(5+v\right)\right)\cdot {c}_0\\ {}+\left(-\frac{r\cdot \left(1+v\right)}{2\cdot {R}^3}+\frac{r^3\cdot \left(5+v\right)}{2\cdot {R}^5}\right)\cdot \tan \left(3\cdot \theta \right)\cdot {A}_0\\ {}+\left(\frac{2\cdot {R}^4\cdot \left(1+v\right)}{r^3}+2\cdot r\cdot \left(3-v\right)\right)\cdot \sin \left(\theta \right)\cdot {d_1}^{\prime}\\ {}+\left(\frac{2\cdot {R}^4\cdot \left(1+v\right)}{r^3}+2\cdot r\cdot \left(3-v\right)\right)\cdot \cos \left(\theta \right)\cdot {d}_1\\ {}+\left(-3\cdot {R}^2\cdot \left(1+v\right)+3\cdot {R}^6\cdot {r}^{-4}\cdot \left(1+v\right)+12\cdot {r}^2\right)\cdot \sin \left(2\cdot \theta \right)\cdot {b_2}^{\prime}\\ {}+\left(\left(-{R}^{-2}-3\cdot {R}^2\cdot {r}^{-4}\right)\cdot \left(1+v\right)+4\cdot {r}^{-2}\cdot v\right)\cdot \sin \left(2\cdot \theta \right)\cdot {d_2}^{\prime}\\ {}+\left(-\frac{24\cdot r\cdot \left(1+v\right)}{R^6}+\frac{12\cdot {r}^3}{R^8}\left(5+v\right)+\frac{12}{r^5}\left(1+v\right)\right)\cdot \sin \left(3\cdot \theta \right)\cdot {c_3}^{\prime}\\ {}+\left(-\frac{18\cdot r\cdot \left(1+v\right)}{R^4}+\frac{8\cdot {r}^3}{R^6}\left(5+v\right)+\frac{2}{r^3}\left(1+5\cdot v\right)\right)\cdot \sin \left(3\cdot \theta \right)\cdot {d}_3^{\prime}\\ {}+{\displaystyle \sum_{n=4,5,6}^N\left[\left(\begin{array}{l}-\left({n}^2-1\right)\cdot {r}^{\left(n-2\right)}\cdot {R}^2\cdot \left(1+v\right)+\left(n+1\right)\cdot {r}^n\cdot \left(n+2+n\cdot v-2\cdot v\right)\\ {}+\left(n+1\right)\cdot {r}^{-\left(n+2\right)}\cdot {R}^{\left(2\cdot n+2\right)}\cdot \left(1+v\right)\end{array}\right)\cdot \sin \left(n\cdot \theta \right)\cdot {b_n}^{\prime}\right]}\\ {}+{\displaystyle \sum_{n=4,5,6}^N\left[\left(\begin{array}{l}-\left(n-1\right)\cdot {r}^{\left(n-2\right)}\cdot {R}^{-\left(2\cdot n-2\right)}\cdot \left(1+v\right)+\left(1-{n}^2\right)\cdot {r}^{-\left(n+2\right)}\cdot {R}^2\cdot \left(1+v\right)\\ {}+\left(n-1\right)\cdot {r}^{-(n)}\left(n-2+n\cdot v+2\cdot v\right)\end{array}\right)\cdot \sin \left(n\cdot \theta \right)\cdot {d_n}^{\prime}\right]}\\ {}+{\displaystyle \sum_{n=2,3,4}^N\left[\left(\begin{array}{l}-\left({n}^2-1\right)\cdot {r}^{\left(n-2\right)}\cdot {R}^2\cdot \left(1+v\right)+\left(n+1\right)\cdot {r}^n\cdot \left(n+2+n\cdot v-2\cdot v\right)\\ {}+\left(n+1\right)\cdot {r}^{-\left(n+2\right)}\cdot {R}^{\left(2\cdot n+2\right)}\cdot \left(1+v\right)\end{array}\right)\cdot \cos \left(n\cdot \theta \right)\cdot {b}_n\right]}\\ {}+{\displaystyle \sum_{n=2,3,4}^N\left[\left(\begin{array}{l}-\left(n-1\right)\cdot {r}^{\left(n-2\right)}\cdot {R}^{-\left(2\cdot n-2\right)}\cdot \left(1+v\right)+\left(1-{n}^2\right)\cdot {r}^{-\left(n+2\right)}\cdot {R}^2\cdot \left(1+v\right)\\ {}+\left(n-1\right)\cdot {r}^{-(n)}\left(n-2+n\cdot v+2\cdot v\right)\end{array}\right)\cdot \cos \left(n\cdot \theta \right)\cdot {d}_n\right]}\end{array}\right] $$
(A2)

with N being the terminating limit for finite series. Combing eqns (A1) through (A4), and integrating, the individual components of displacement in polar co-ordinates of eqns (A5) and (A6) are obtained

$$ \frac{\partial {u}_r}{\kern0.5em \partial \mathrm{r}} = {\upepsilon}_{rr} = \frac{1}{\mathrm{E}}\ \left({\sigma}_{rr}\hbox{-}\ \upupsilon\ {\upsigma}_{\uptheta \uptheta}\right) $$
(A3)
$$ \frac{\partial {u}_{\theta }}{\partial \theta } = r.{\varepsilon}_{\theta \theta } - {u}_r $$
(A4)
$$ {u}_r=\frac{1}{E}\left[\begin{array}{l}\left(\left(-\frac{1}{r}-\frac{3}{4}\frac{r^2}{R^3}\right)\cdot \left(1+v\right)+\left(\frac{r^4}{8\cdot {R}^5}\right)\cdot \left(1+5\cdot v\right)\right)\cdot {b}_0\\ {}+\left(2\cdot r\cdot \left(1-v\right)-\frac{3\cdot {r}^2}{2\cdot R}\cdot \left(1+v\right)+\frac{r^4}{4\cdot {R}^3}\cdot \left(1+5\cdot v\right)\right)\cdot {c}_0\\ {}+\left(\frac{r^2\cdot \left(1+v\right)}{4\cdot {R}^3}-\frac{r^4\cdot \left(1+5\cdot v\right)}{8\cdot {R}^5}\right)\cdot \tan \left(3\cdot \theta \right)\cdot {A}_0\\ {}+\left(\frac{R^4\cdot \left(1+v\right)}{r^2}+{r}^2\cdot \left(1-3\cdot v\right)\right)\cdot \sin \left(\theta \right)\cdot {d}_1^{\prime}\\ {}+\left(\frac{R^4\cdot \left(1+v\right)}{r^2}+{r}^2\cdot \left(1-3\cdot v\right)\right)\cdot \cos \left(\theta \right)\cdot {d}_1\\ {}+\left(3\cdot r\cdot {R}^2\cdot \left(1+v\right)+{R}^6\cdot {r}^{-3}\cdot \left(1+v\right)-4\cdot {r}^3\cdot v\right)\cdot \sin \left(2\cdot \theta \right)\cdot {b}_2^{\prime}\\ {}+\left(\left({R}^{-2}\cdot r-{R}^2\cdot {r}^{-3}\right)\cdot \left(1+v\right)+4\cdot {r}^{-1}\right)\cdot \sin \left(2\cdot \theta \right)\cdot {d}_2^{\prime}\\ {}+\left(\frac{12\cdot {r}^2\cdot \left(1+v\right)}{R^6}-\frac{3\cdot {r}^4}{R^8}\left(1+5\cdot v\right)+\frac{3}{r^4}\left(1+v\right)\right)\cdot \sin \left(3\cdot \theta \right)\cdot {c}_3^{\prime}\\ {}+\left(\frac{9\cdot {r}^2\cdot \left(1+v\right)}{R^4}-\frac{2\cdot {r}^4}{R^6}\left(1+5\cdot v\right)+\frac{1}{r^2}\left(5+v\right)\right)\cdot \sin \left(3\cdot \theta \right)\cdot {d}_3^{\prime}\\ {}+{\displaystyle \sum_{n=4,5,6}^N\left[\left(\begin{array}{l}\left(n+1\right)\cdot {r}^{\left(n-1\right)}\cdot {R}^2\cdot \left(1+v\right)-{r}^{n+1}\cdot \left(n-2+n\cdot v+2\cdot v\right)\\ {}+{r}^{-\left(n+1\right)}\cdot {R}^{\left(2\cdot n+2\right)}\cdot \left(1+v\right)\end{array}\right)\cdot \sin \left(n\cdot \theta \right)\cdot {b}_n^{\prime}\right]}\\ {}+{\displaystyle \sum_{n=4,5,6}^N\left[\left(\begin{array}{l}{r}^{\left(n-1\right)}\cdot {R}^{-\left(2\cdot n-2\right)}\cdot \left(1+v\right)+\left(1-n\right)\cdot {r}^{-\left(n+1\right)}\cdot {R}^2\cdot \left(1+v\right)\\ {}+{r}^{\left(-n+1\right)}\left(n+2+n\cdot v-2\cdot v\right)\end{array}\right)\cdot \sin \left(n\cdot \theta \right)\cdot {d}_n^{\prime}\right]}\\ {}+{\displaystyle \sum_{n=2,3,4}^N\left[\left(\begin{array}{l}\left(n+1\right)\cdot {r}^{\left(n-1\right)}\cdot {R}^2\cdot \left(1+v\right)-{r}^{n+1}\cdot \left(n-2+n\cdot v+2\cdot v\right)\\ {}+{r}^{-\left(n+1\right)}\cdot {R}^{\left(2\cdot n+2\right)}\cdot \left(1+v\right)\end{array}\right)\cdot \cos \left(n\cdot \theta \right)\cdot {b}_n\right]}\\ {}+{\displaystyle \sum_{n=2,3,4}^N\left[\left(\begin{array}{l}{r}^{\left(n-1\right)}\cdot {R}^{-\left(2\cdot n-2\right)}\cdot \left(1+v\right)+\left(1-n\right)\cdot {r}^{-\left(n+1\right)}\cdot {R}^2\cdot \left(1+v\right)\\ {}+{r}^{\left(-n+1\right)}\left(n+2+n\cdot v-2\cdot v\right)\end{array}\right)\cdot \cos \left(n\cdot \theta \right)\cdot {d}_n\right]}\\ {}+g\left(\theta \right)\end{array}\right] $$
(A5)
$$ {u}_{\theta }=\frac{1}{E}\left[\begin{array}{l}\left(\left(\frac{9}{4}\frac{r^2}{R^3}\right)\cdot \left(1+v\right)-\left(\frac{r^4}{8\cdot {R}^5}\right)\cdot \left(21+9\cdot v\right)\right)\cdot \theta \cdot {b}_0\\ {}+\left(\frac{9\cdot {r}^2}{2\cdot R}\cdot \left(1+v\right)-\frac{r^4}{4\cdot {R}^3}\cdot \left(21+9\cdot v\right)\right)\cdot \theta \cdot {c}_0\\ {}+\left(\frac{r^2\cdot \left(1+v\right)}{4\cdot {R}^3}-\frac{r^4\cdot \left(7+3\cdot v\right)}{8\cdot {R}^5}\right)\cdot \ln \left( \cos \left(3\cdot \theta \right)\right)\cdot {A}_0\\ {}-\left(\frac{R^4\cdot \left(1+v\right)}{r^2}+{r}^2\cdot \left(5+v\right)\right)\cdot \cos \left(\theta \right)\cdot {d_1}^{\prime}\\ {}+\left(\frac{R^4\cdot \left(1+v\right)}{r^2}+{r}^2\cdot \left(5+v\right)\right)\cdot \sin \left(\theta \right)\cdot {d}_1\\ {}+\left(3\cdot r\cdot {R}^2\cdot \left(1+v\right)-{R}^6\cdot {r}^{-3}\cdot \left(1+v\right)-2\cdot {r}^3\cdot \left(3+v\right)\right)\cdot \cos \left(2\cdot \theta \right)\cdot {b_2}^{\prime}\\ {}+\left(\left({R}^{-2}\cdot r+{R}^2\cdot {r}^{-3}\right)\cdot \left(1+v\right)+2\cdot {r}^{-1}\cdot \left(1-v\right)\right)\cdot \cos \left(2\cdot \theta \right)\cdot {d_2}^{\prime}\\ {}+\left(\frac{12\cdot {r}^2\cdot \left(1+v\right)}{R^6}-\frac{r^4}{R^8}\left(21+9\cdot v\right)-\frac{3}{r^4}\cdot \left(1+v\right)\right)\cdot \cos \left(3\cdot \theta \right)\cdot {c_3}^{\prime}\\ {}+\left(\frac{9\cdot {r}^2\cdot \left(1+v\right)}{R^4}-\frac{2\cdot {r}^4}{3\cdot {R}^6}\left(21+9\cdot v\right)+\frac{1}{r^2}\left(1-3\cdot v\right)\right)\cdot \cos \left(3\cdot \theta \right)\cdot {d_3}^{\prime}\\ {}+{\displaystyle \sum_{n=4,5,6}^N\left[\left(\begin{array}{l}\left(n+1\right)\cdot {r}^{\left(n-1\right)}\cdot {R}^2\cdot \left(1+v\right)-{r}^{n+1}\cdot \left(n+4+n\cdot v\right)\\ {}-\cdot {r}^{-\left(n+1\right)}\cdot {R}^{\left(2\cdot n+2\right)}\cdot \left(1+v\right)\end{array}\right)\cdot \cos \left(n\cdot \theta \right)\cdot {b_n}^{\prime}\right]}\\ {}+{\displaystyle \sum_{n=4,5,6}^N\left[\left(\begin{array}{l}{r}^{\left(n-1\right)}\cdot {R}^{-\left(2\cdot n-2\right)}\cdot \left(1+v\right)-\left(1-n\right)\cdot {r}^{-\left(n+1\right)}\cdot {R}^2\cdot \left(1+v\right)\\ {}-{r}^{\left(-n+1\right)}\left(n-4+n\cdot v\right)\end{array}\right)\cdot \cos \left(n\cdot \theta \right)\cdot {d_n}^{\prime}\right]}\\ {}+{\displaystyle \sum_{n=2,3,4}^N\left[\left(\begin{array}{l}-\left(n+1\right)\cdot {r}^{\left(n-1\right)}\cdot {R}^2\cdot \left(1+v\right)+{r}^{n+1}\cdot \left(n+4+n\cdot v\right)\\ {}+{r}^{-\left(n+1\right)}\cdot {R}^{\left(2\cdot n+2\right)}\cdot \left(1+v\right)\end{array}\right)\cdot \sin \left(n\cdot \theta \right)\cdot {b}_n\right]}\\ {}+{\displaystyle \sum_{n=2,3,4}^N\left[\left(\begin{array}{l}-{r}^{\left(n-1\right)}\cdot {R}^{-\left(2\cdot n-2\right)}\cdot \left(1+v\right)+\left(1-n\right)\cdot {r}^{-\left(n+1\right)}\cdot {R}^2\cdot \left(1+v\right)\\ {}+{r}^{\left(-n+1\right)}\left(n-4+n\cdot v\right)\end{array}\right)\cdot \sin \left(n\cdot \theta \right)\cdot {d}_n\right]}\\ {}-{S}_1\cdot \sin \left(\theta \right)-{S}_2\cdot \cos \left(\theta \right)+{R}^{*}\cdot r\end{array}\right] $$
(A6)

where g(θ) = S1cos θ – S2sin θ. S 1 and S 2 represent rigid body translations and R* represents a rigid body rotation [7]. For a physical member loaded in a testing machine, S 1, S 2 and R* can be equated to zero.

$$ u=\frac{1}{E}\left[\begin{array}{l}\left(\begin{array}{l}\left(-\frac{1}{r}\cdot \cos \left(\theta \right)-\frac{3}{4}\frac{r^2}{R^3}\cdot \left( \cos \left(\theta \right)+3\cdot \theta \sin \left(\theta \right)\right)\right)\cdot \left(1+v\right)\\ {}+\left(\frac{r^4}{8\cdot {R}^5}\right)\cdot \left(\left(1+5\cdot v\right)\cdot \cos \left(\theta \right)+\left(21+9\cdot v\right)\cdot \theta \cdot \sin \left(\theta \right)\right)\end{array}\right)\cdot {b}_0+\\ {}\left(\begin{array}{l}2\cdot r\cdot \left(1-v\right)\cdot \cos \left(\theta \right)-\frac{3\cdot {r}^2}{2\cdot R}\cdot \left(1+v\right)\cdot \left( \cos \left(\theta \right)+3\cdot \theta \sin \left(\theta \right)\right)\\ {}+\frac{r^4}{4\cdot {R}^3}\cdot \left( \cos \left(\theta \right)\cdot \left(1+5\cdot v\right)+\theta \cdot \sin \left(\theta \right)\cdot \left(21+9\cdot v\right)\right)\end{array}\right)\cdot {c}_0\\ {}+\left(\begin{array}{l}\frac{r^2\cdot \left(1+v\right)}{4\cdot {R}^3}\left( \cos \left(\theta \right)\cdot \tan \left(3\cdot \theta \right)- \ln \left( \cos \left(3\cdot \theta \right)\right)\cdot \sin \left(\theta \right)\right)\\ {}-\frac{r^4}{8\cdot {R}^5}\left( \cos \left(\theta \right)\cdot \tan \left(3\cdot \theta \right)\cdot \left(1+5\cdot v\right)-\frac{\left(21+9\cdot v\right)}{3} \ln \left( \cos \left(3\cdot \theta \right)\right)\cdot \sin \left(\theta \right)\right)\end{array}\right)\cdot {A}_0\\ {}+\left(\frac{R^4\cdot \left(1+v\right)}{r^2}+{r}^2\cdot \left(3-v\right)\right)\cdot \sin \left(2\cdot \theta \right)\cdot {d_1}^{\prime}\\ {}+\left(\frac{R^4\cdot \left(1+v\right)}{r^2}\cdot \cos \left(2\cdot \theta \right)+{r}^2\cdot \left(\left(5+v\right)\cdot \cos \left(2\cdot \theta \right)-\left(4+4v\right)\cdot { \cos}^2\left(\theta \right)\right)\right)\cdot {d}_1\\ {}+\left(\begin{array}{l}3\cdot r\cdot {R}^2\cdot \left(1+v\right)\cdot \sin \left(\theta \right)-{R}^6\cdot {r}^{-3}\cdot \left(1+v\right)\cdot \sin \left(3\cdot \theta \right)\\ {}-2\cdot {r}^3\left(\left(3\cdot \cos \left(2\cdot \theta \right)\cdot \sin \left(\theta \right)\right)+\left(\left( \sin \left(2\cdot \theta \right)\cdot \cos \left(\theta \right)+\left( \sin \left(3\cdot \theta \right)\right)\right)\cdot v\right)\right)\end{array}\right){b_2}^{\prime}\\ {}+\left(\begin{array}{l}\left({R}^{-2}\cdot r\cdot \sin \left(\theta \right)-{R}^2\cdot {r}^{-3}\cdot \sin \left(3\cdot \theta \right)\right)\cdot \left(1+v\right)\\ {}+2\cdot {r}^{-1}\cdot \left( \sin \left(2\cdot \theta \right)\cdot \cos \left(\theta \right)+v\cdot \cos \left(2\cdot \theta \right)\cdot \sin \left(\theta \right)+ \sin \left(\theta \right)\right)\end{array}\right)\cdot {d_2}^{\prime}\\ {}+\left(\frac{12\cdot {r}^2\cdot \left(1+v\right)}{R^6}\cdot \sin \left(2\cdot \theta \right)-\frac{r^4}{R^8}\left(\left(3+15\cdot v\right)\cdot \sin \left(2\cdot \theta \right)-\left(18-6\cdot v\right)\cdot \cos \left(3\cdot \theta \right)\cdot \sin \left(\theta \right)\right)+\frac{3}{r^4}\left( \sin \left(4\cdot \theta \right)\right)\right)\cdot {c_3}^{\prime}\\ {}+\left(\begin{array}{l}\frac{9\cdot {r}^2\cdot \left(1+v\right)}{R^4}\cdot \sin \left(2\cdot \theta \right)-\frac{r^4}{R^6}\left(\left(14+6\cdot v\right)\cdot \sin \left(2\cdot \theta \right)-\left(12-4\cdot v\right)\cdot \sin \left(3\cdot \theta \right)\cdot \cos \left(\theta \right)\right)\\ {}+\frac{1}{r^2}\left(\left(5+v\right)\cdot \sin \left(2\cdot \theta \right)-\left(4+4\cdot v\right)\cdot \cos \left(3\cdot \theta \right)\cdot \sin \left(\theta \right)\right)\end{array}\right)\cdot {d_3}^{\prime}\\ {}+{\displaystyle \sum_{n=4,5,6}^N\left[\left(\begin{array}{l}\left(n+1\right)\cdot {r}^{\left(n-1\right)}\cdot {R}^2\cdot \left(1+v\right)\cdot \sin \left(\left(n-1\right)\cdot \theta \right)\\ {}-{r}^{n+1}\cdot \left(\left(n+n\cdot v+4\right)\cdot \sin \left(\left(n+1\right)\cdot \theta \right)-2\cdot \left(3-v\right)\cdot \sin \left(n\cdot \theta \right)\cdot \cos \left(\theta \right)\right)\\ {}+{r}^{-\left(n+1\right)}\cdot {R}^{\left(2\cdot n+2\right)}\cdot \left(1+v\right)\cdot \sin \left(\left(n+1\right)\cdot \theta \right)\end{array}\right){b_n}^{\prime}\right]}\\ {}+{\displaystyle \sum_{n=4,5,6}^N\left[\left(\begin{array}{l}{r}^{\left(n-1\right)}\cdot {R}^{-\left(2\cdot n-2\right)}\cdot \left(1+v\right)\cdot \sin \left(\left(n-1\right)\cdot \theta \right)+\left(1-n\right)\cdot {r}^{-\left(n+1\right)}\cdot {R}^2\cdot \left(1+v\right)\cdot \sin \left(\left(n+1\right)\cdot \theta \right)\\ {}+{r}^{\left(-n+1\right)}\left(\left(n+n\cdot v-4\right)\cdot \sin \left(\left(n+1\right)\cdot \theta \right)+2\cdot \left(3-v\right)\cdot \sin \left(n\cdot \theta \right)\cdot \cos \left(\theta \right)\right)\end{array}\right)\cdot {d_n}^{\prime}\right]}\\ {}+{\displaystyle \sum_{n=2,3,4}^N\left[\left(\begin{array}{l}\left(n+1\right)\cdot {r}^{\left(n-1\right)}\cdot {R}^2\cdot \left(1+v\right)\cdot \cos \left(\left(n-1\right)\cdot \theta \right)\\ {}-{r}^{n+1}\cdot \left(\left(n+n\cdot v+4\right)\cdot \cos \left(\left(n-1\right)\cdot \theta \right)-2\cdot \left(3-v\right)\cdot \cos \left(n\cdot \theta \right)\cdot \cos \left(\theta \right)\right)\\ {}+{r}^{-\left(n+1\right)}\cdot {R}^{\left(2\cdot n+2\right)}\cdot \left(1+v\right)\cdot \cos \left(\left(n+1\right)\cdot \theta \right)\end{array}\right)\cdot {b}_n\right]}\\ {}+{\displaystyle \sum_{n=2,3,4}^N\left[\left(\begin{array}{l}{r}^{\left(n-1\right)}\cdot {R}^{-\left(2\cdot n-2\right)}\cdot \left(1+v\right)\cdot \cos \left(\left(n-1\right)\cdot \theta \right)+\left(1-n\right)\cdot {r}^{-\left(n+1\right)}\cdot {R}^2\cdot \left(1+v\right)\cdot \cos \left(\left(n+1\right)\cdot \theta \right)+\\ {}{r}^{\left(-n+1\right)}\left(\left(n+n\cdot v-4\right)\cdot \cos \left(\left(n+1\right)\cdot \theta \right)+2\cdot \left(3-v\right)\cdot \cos \left(n\cdot \theta \right)\cdot \cos \left(\theta \right)\right)\end{array}\right)\cdot {d}_n\right]}\end{array}\right] $$
(A7)

and

$$ v=\frac{1}{E}\left[\begin{array}{l}\left(\left(-\frac{1}{r}\cdot \sin \left(\theta \right)-\frac{3}{4}\frac{r^2}{R^3}\cdot \left( \sin \left(\theta \right)-3\cdot \theta \cos \left(\theta \right)\right)\right)\cdot \left(1+v\right)+\left(\frac{r^4}{8\cdot {R}^5}\right)\cdot \left(\left(1+5\cdot v\right)\cdot \sin \left(\theta \right)-\left(21+9\cdot v\right)\cdot \theta \cdot \cos \left(\theta \right)\right)\right)\cdot {b}_0\\ {}+\left(2\cdot r\cdot \left(1-v\right)\cdot \sin \left(\theta \right)-\frac{3\cdot {r}^2}{2\cdot R}\cdot \left(1+v\right)\cdot \left( \sin \left(\theta \right)-3\cdot \theta \cos \left(\theta \right)\right)+\frac{r^4}{4\cdot {R}^3}\cdot \left( \sin \left(\theta \right)\cdot \left(1+5\cdot v\right)-\theta \cdot \cos \left(\theta \right)\cdot \left(21+9\cdot v\right)\right)\right)\cdot {c}_0\\ {}+\left(\begin{array}{l}\frac{r^2\cdot \left(1+v\right)}{4\cdot {R}^3}\left( \sin \left(\theta \right)\cdot \tan \left(3\cdot \theta \right)+ \ln \left( \cos \left(3\cdot \theta \right)\right)\cdot \cos \left(\theta \right)\right)\\ {}-\frac{r^4}{8\cdot {R}^5}\left( \sin \left(\theta \right)\cdot \tan \left(3\cdot \theta \right)\cdot \left(1+5\cdot v\right)+\frac{\left(21+9\cdot v\right)}{3} \ln \left( \cos \left(3\cdot \theta \right)\right)\cdot \cos \left(\theta \right)\right)\end{array}\right)\cdot {A}_0\\ {}-\left(\frac{R^4\cdot \left(1+v\right)}{r^2}\cdot \cos \left(2\cdot \theta \right)+{r}^2\cdot \left(2\cdot \left(1+v\right)+\left(3-v\right)\cdot \cos \left(2\cdot \theta \right)\right)\right)\cdot {d_1}^{\prime }+\left(\frac{R^4\cdot \left(1+v\right)}{r^2}\cdot \sin \left(2\cdot \theta \right)+{r}^2\cdot \left(\left(3-v\right)\cdot \sin \left(2\cdot \theta \right)\right)\right)\cdot {d}_1\\ {}+\left(r\cdot {R}^2\cdot \left(1+v\right)\cdot \left(3\cdot \cos \left(\theta \right)-{r}^{-4}\cdot {R}^4\cdot \cos \left(3\theta \right)\right)-\left(2\cdot \cos \left(\theta \right)\cdot {r}^3\cdot \left( \cos \left(2\theta \right)\cdot \left(3-v\right)+2v\right)\right)\right){b_2}^{\prime}\\ {}+\left(\left({R}^{-2}\cdot r\cdot \cos \left(\theta \right)+{R}^2\cdot {r}^{-3}\cdot \cos \left(3\cdot \theta \right)\right)\cdot \left(1+v\right)+2\cdot \cos \left(\theta \right)\cdot {r}^{-1}\cdot \left(- \cos \left(2\cdot \theta \right)\cdot \left(1+v\right)+2\right)\right)\cdot {d_2}^{\prime}\\ {}+\left(\frac{12\cdot {r}^2\cdot \left(1+v\right)}{R^6}\cdot \cos \left(2\cdot \theta \right)+\frac{24\cdot {r}^4}{R^8}\left(-\left(3-v\right)\cdot { \cos}^4\left(\theta \right)+2\cdot \left(1-v\right)\cdot { \cos}^2\left(\theta \right)+\left(\frac{1+5\cdot v}{8}\right)\right)-\frac{3}{r^4}\left( \cos \left(4\cdot \theta \right)\cdot \left(1+v\right)\right)\right)\cdot {c_3}^{\prime}\\ {}+\left(\begin{array}{l}\frac{9\cdot {r}^2\cdot \left(1+v\right)}{R^4}\cdot \cos \left(2\cdot \theta \right)-\frac{2\cdot {r}^4}{R^6}\left(8\cdot \left(3-v\right)\cdot { \cos}^4\left(\theta \right)-16\cdot \left(1-v\right)\cdot { \cos}^2\left(\theta \right)-\left(1+5\cdot v\right)\right)\\ {}+\frac{1}{r^2}\left(-16\cdot \left(1+v\right)\cdot { \cos}^4\left(\theta \right)+2\cdot { \cos}^2\left(\theta \right)\cdot \left(11+7\cdot v\right)-\left(5+v\right)\right)\end{array}\right)\cdot {d_3}^{\prime}\\ {}+{\displaystyle \sum_{n=4,5,6}^N\left[\left(\begin{array}{l}\left(n+1\right)\cdot {r}^{\left(n-1\right)}\cdot {R}^2\cdot \left(1+v\right)\cdot \cos \left(\left(n-1\right)\cdot \theta \right)\\ {}-{r}^{n+1}\cdot \left(\left(n\cdot \left(1+v\right)\right)\cdot \cos \left(\left(n-1\right)\cdot \theta \right)-2\cdot \sin \left(n\cdot \theta \right)\cdot \sin \left(\theta \right)\cdot \left(1-v\right)+4\cdot \cos \left(n\cdot \theta \right)\cdot \cos \left(\theta \right)\right)\\ {}-{r}^{-\left(n+1\right)}\cdot {R}^{\left(2\cdot n+2\right)}\cdot \left(1+v\right)\cdot \cos \left(\left(n+1\right)\cdot \theta \right)\end{array}\right){b_n}^{\prime}\right]}\\ {}+{\displaystyle \sum_{n=4,5,6}^N\left[\left(\begin{array}{l}{r}^{\left(n-1\right)}\cdot {R}^{-\left(2\cdot n-2\right)}\cdot \left(1+v\right)\cdot \cos \left(\left(n-1\right)\cdot \theta \right)\\ {}-\left(1-n\right)\cdot {r}^{-\left(n+1\right)}\cdot {R}^2\cdot \left(1+v\right)\cdot \cos \left(\left(n+1\right)\cdot \theta \right)\\ {}-{r}^{\left(-n+1\right)}\left(\left(n+n\cdot v\right)\cdot \cos \left(\left(n+1\right)\cdot \theta \right)-2\cdot \left(1-v\right)\cdot \sin \left(n\cdot \theta \right)\cdot \sin \left(\theta \right)-4\cdot \cos \left(n\cdot \theta \right)\cdot \cos \left(\theta \right)\right)\end{array}\right)\cdot {d_n}^{\prime}\right]}\\ {}+{\displaystyle \sum_{n=2,3,4}^N\left[\left(\begin{array}{l}-\left(n+1\right)\cdot {r}^{\left(n-1\right)}\cdot {R}^2\cdot \left(1+v\right)\cdot \sin \left(\left(n-1\right)\cdot \theta \right)\\ {}+{r}^{n+1}\cdot \left(\left(n\cdot \left(1+v\right)\right)\cdot \sin \left(\left(n-1\right)\cdot \theta \right)+2\cdot \cos \left(n\cdot \theta \right)\cdot \sin \left(\theta \right)\cdot \left(1-v\right)+4\cdot \sin \left(n\cdot \theta \right)\cdot \cos \left(\theta \right)\right)\\ {}+{r}^{-\left(n+1\right)}\cdot {R}^{\left(2\cdot n+2\right)}\cdot \left(1+v\right)\cdot \sin \left(\left(n+1\right)\cdot \theta \right)\end{array}\right){b}_n\right]}\\ {}+{\displaystyle \sum_{n=2,3,4}^N\left[\left(\begin{array}{l}-{r}^{\left(n-1\right)}\cdot {R}^{-\left(2\cdot n-2\right)}\cdot \left(1+v\right)\cdot \sin \left(\left(n-1\right)\cdot \theta \right)\\ {}+\left(1-n\right)\cdot {r}^{-\left(n+1\right)}\cdot {R}^2\cdot \left(1+v\right)\cdot \sin \left(\left(n+1\right)\cdot \theta \right)\\ {}+{r}^{\left(-n+1\right)}\left(\left(n+n\cdot v\right)\cdot \sin \left(\left(n+1\right)\cdot \theta \right)+2\cdot \left(1-v\right)\cdot \cos \left(n\cdot \theta \right)\cdot \sin \left(\theta \right)-4\cdot \sin \left(n\cdot \theta \right)\cdot \cos \left(\theta \right)\right)\end{array}\right)\cdot {d}_n\right]}\end{array}\right] $$
(A8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paneerselvam, S., Samad, W.A., Venkatesh, R. et al. Displacement-Based Experimental Stress Analysis of a Circularly-Perforated Asymmetrical Isotropic Structure. Exp Mech 57, 129–142 (2017). https://doi.org/10.1007/s11340-016-0218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0218-2

Keywords

Navigation