×

Low Mach number limit of a compressible non-isothermal nematic liquid crystals model. (English) Zbl 1499.76087

Summary: In this paper, we study the low Mach number limit of a compressible non-isothermal model for nematic liquid crystals in a bounded domain. We establish the uniform estimates with respect to the Mach number, and thus prove the convergence to the solution of the incompressible model for nematic liquid crystals.

MSC:

76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35Q30 Navier-Stokes equations
35Q35 PDEs in connection with fluid mechanics
76A15 Liquid crystals
Full Text: DOI

References:

[1] Alazard, T., Low Mach number limit of the full Navier-Stokes equations, Arch Ration Mech Anal, 180, 1-73 (2006) · Zbl 1108.76061 · doi:10.1007/s00205-005-0393-2
[2] Bendali, A.; Dominguez, J. M.; Gallic, S., A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three dimensional domains, J Math Anal Appl, 107, 537-560 (1985) · Zbl 0591.35053 · doi:10.1016/0022-247X(85)90330-0
[3] Bourguignon, J.; Brezis, H., Remarks on the Euler equation, J Funct Anal, 15, 341-363 (1974) · Zbl 0279.58005 · doi:10.1016/0022-1236(74)90027-5
[4] Chu, Y.; Liu, X.; Liu, X., Strong solutions to the compressible liquid crystal system, Pacific J Math, 257, 37-52 (2012) · Zbl 1451.76009 · doi:10.2140/pjm.2012.257.37
[5] Cui, W.; Ou, Y.; Ren, D., Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains, J Math Anal Appl, 427, 263-288 (2015) · Zbl 1333.35186 · doi:10.1016/j.jmaa.2015.02.049
[6] Ding, S.; Huang, J.; Wen, H.; Zi, R., Incompressible limit of the compressible nematic liquid crystal flow, J Funct Anal, 264, 1711-1756 (2013) · Zbl 1262.76011 · doi:10.1016/j.jfa.2013.01.011
[7] Dou, C.; Jiang, S.; Ou, Y., Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain, J Differential Equations, 258, 379-398 (2015) · Zbl 1310.35187 · doi:10.1016/j.jde.2014.09.017
[8] Fan, J.; Li, F.; Nakamura, G., Local well-posedness for a compressible non-isothermal model for nematic liquid crystals, J Math Phys, 59, 031503 (2018) · Zbl 1391.76043 · doi:10.1063/1.5027189
[9] Feireisl, E.; Fremond, M.; Rocca, E.; Schimperna, G., A new approach to non-isothermal models for nematic liquid crystals, Arch Ration Mech Anal, 205, 651-672 (2012) · Zbl 1282.76059 · doi:10.1007/s00205-012-0517-4
[10] Feireisl, E.; Rocca, E.; Shimperna, G., On a non-isothermal model for nematic liquid crystals, Nonlinearity, 24, 243-257 (2011) · Zbl 1372.76011 · doi:10.1088/0951-7715/24/1/012
[11] Gu, W.; Fan, J.; Zhou, Y., Regularity criteria for some simplified non-isothermal models for nematic liquid crystals, Comput Math Appl, 72, 2839-2853 (2016) · Zbl 1372.35235 · doi:10.1016/j.camwa.2016.10.006
[12] Guo, B.; Xi, X.; Xie, B., Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals, J Differential Equations, 262, 1413-1460 (2017) · Zbl 1352.76103 · doi:10.1016/j.jde.2016.10.015
[13] Guo B, Xie B, Xi X. On a compressible non-isothermal model for nematic liquid crystals. arXiv:1603.03976 · Zbl 1352.76103
[14] Huang, T.; Wang, C.; Wen, H., Strong solutions of the compressible nematic liquid crystal flow, J Differential Equations, 252, 2222-2265 (2012) · Zbl 1233.35168 · doi:10.1016/j.jde.2011.07.036
[15] Huang, T.; Wang, C.; Wen, H., Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch Ration Mech Anal, 204, 285-311 (2012) · Zbl 1314.76010 · doi:10.1007/s00205-011-0476-1
[16] Jiang, F.; Jiang, S.; Wang, D., On multi-dimensional compressible flow of nematic liquid crystals with large initial energy in a bounded domain, J Funct Anal, 265, 3369-3397 (2013) · Zbl 1308.35215 · doi:10.1016/j.jfa.2013.07.026
[17] Jiang, F.; Jiang, S.; Wang, D., Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions, Arch Ration Mech Anal, 214, 403 (2014) · Zbl 1307.35225 · doi:10.1007/s00205-014-0768-3
[18] Klainerman, S.; Majda, A., Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm Pure Appl Math, 34, 481-524 (1981) · Zbl 0476.76068 · doi:10.1002/cpa.3160340405
[19] Li, J.; Xin, Z., Global existence of weak solutions to the non-isothermal nematic liquid crystuls in 2D, Acta Math Sci, 36B, 3, 973-1014 (2016) · Zbl 1363.35077 · doi:10.1016/S0252-9602(16)30054-6
[20] Li, X.; Guo, B., Well-posedness for the three-dimensional compressible liquid crystal flows, Discrete Contin Dyn Syst Ser S, 9, 1913-1937 (2016) · Zbl 1352.35118 · doi:10.3934/dcdss.2016078
[21] Lin, F.; Wang, C., Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philos Trans R Soc Lond Ser A Math Phys Eng Sci, 372, 20130361 (2014) · Zbl 1353.76004 · doi:10.1098/rsta.2013.0361
[22] Lions, P. L., Mathematical Topics in Fluid Mechanics Vol 2: Compressible Models (1998), Oxford University Press: New York, Oxford University Press · Zbl 0908.76004
[23] Metivier, G.; Schochet, S., The incompressible limit of the non-isentropic Euler equations, Arch Ration Mech Anal, 158, 61-90 (2001) · Zbl 0974.76072 · doi:10.1007/PL00004241
[24] Qi, G.; Xu, J., The low Mach number limit for the compressible flow of liquid crystals, Appl Math Comput, 297, 39-49 (2017) · Zbl 1411.35230
[25] Schochet, S., The mathematical theory of the incompressible limit in fluid dynamics//Handbook of Mathematical Fluid Dynamics, Vol IV, Amsterdam: Elsevier/North-Holland, 123-157 (2007)
[26] Xiao, Y.; Xin, Z. P., On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Comm Pure Appl Math, 60, 1027-1055 (2007) · Zbl 1117.35063 · doi:10.1002/cpa.20187
[27] Yang, X., Uniform well-posedness and low Mach number limit to the compressible nematic liquid flows in a bounded domain, Nonlinear Anal, 120, 118-126 (2015) · Zbl 1328.76080 · doi:10.1016/j.na.2015.03.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.