×

The low Mach number limit for the compressible flow of liquid crystals. (English) Zbl 1411.35230

Summary: In this paper, we are concerned with the compressible flow of liquid crystals. Based on the convergence-stability principle, it is shown that, for the Mach number sufficiently small, the Cauchy problem of compressible liquid crystal flow has a unique smooth solution on the (finite) time interval where the incompressible liquid crystal flow exists. Furthermore, it is justified that, as the Mach number tends to zero, the smooth solutions converge rigorously to those of the incompressible equations, and the sharp convergence orders are also obtained.

MSC:

35Q35 PDEs in connection with fluid mechanics
35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
76A15 Liquid crystals
Full Text: DOI

References:

[1] Coutand, D.; Shkoller, S., Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals, C.R. Acad. Sci. Ser. I, 333, 919-924 (2001) · Zbl 0999.35078
[2] Desjardins, B.; Grenier, E., Low Mach limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A, 455, 2271-2279 (1999) · Zbl 0934.76080
[3] Desjardins, B.; Grenier, E.; Lions, P.-L.; Masmoudi, N., Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl., 78, 461-471 (1999) · Zbl 0992.35067
[4] Ding, S. J.; Huang, J. R.; Wen, H. Y.; Zi, R. Z., Incompressible limit of the compressible nematic liquid crystal flow, J. Funct. Anal., 264, 1711-1756 (2013) · Zbl 1262.76011
[5] Ding, S. J.; Lin, J. Y.; Wang, C. Y.; Wen, H. Y., Compressible hydrodynamic flow of liquid crystals in 1d, Discret. Contin. Dyn. Syst., 32, 539-563 (2012) · Zbl 1235.35156
[6] Ding, S. J.; Wang, C. Y.; Wen, H. Y., Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discret. Contin. Dyn. Syst., 15, 357-371 (2011) · Zbl 1217.35099
[7] Ericksen, J., Conservation laws for liquid crystals, Trans. Soc. Rheol., 5, 22-34 (1961)
[8] Ericksen, J., Hydrostatic theory of liquid crystal, Arch. Ration. Mech. Anal., 9, 371-378 (1962) · Zbl 0105.23403
[9] Hong, M. C., Global existence of solutions of the simplified Ericksen-Leslie system in \(R^2\), Calc. Var. Partial Differ. Equ., 40, 15-36 (2011) · Zbl 1213.35014
[10] Huang, T.; Wang, C. Y., Blow up criterion for nematic liquid crystal flows, Commun. Partial Differ. Equ., 37, 875-884 (2012) · Zbl 1247.35103
[11] Huang, T.; Wang, C. Y.; Wen, H. Y., Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Ration. Mech. Anal., 204, 285-311 (2012) · Zbl 1314.76010
[12] Huang, T.; Wang, C. Y.; Wen, H. Y., Strong solutions of the compressible nematic liquid crystal flow, J. Differ. Equ., 252, 2222-2265 (2012) · Zbl 1233.35168
[13] Jiang, F.; Tan, Z., Global weak solution to the flow of liquid crystals system, Math. Methods Appl. Sci., 32, 2243-2266 (2009) · Zbl 1185.35167
[14] Klainerman, S.; Majda, A., Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible uids, Commun. Pure Appl. Math., 34, 481-524 (1981) · Zbl 0476.76068
[15] Klainerman, S.; Majda, A., Compressible and incompressible uids, Commun. Pure Appl. Math., 35, 629-651 (1982) · Zbl 0478.76091
[16] Leslie, F., Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal, 28, 265-283 (1968) · Zbl 0159.57101
[17] Li, J.; Wang, D. H., Global strong solution to the density-dependent incompressible flow of liquid crystals, Trans. Am. Math. Soc., 367, 2301-2338 (2015) · Zbl 1311.35224
[18] Lin, F. H., Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena, Commun. Pure Appl. Math., 42, 789-814 (1989) · Zbl 0703.35173
[19] Lin, F. H.; Liu, C., Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math., 48, 501-537 (1995) · Zbl 0842.35084
[20] Lin, F. H.; Liu, C., Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discret. Contin. Dyn. Syst., 2, 1-22 (1996) · Zbl 0948.35098
[21] Lin, F. H.; Liu, C., Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154, 135-156 (2000) · Zbl 0963.35158
[22] Lin, F. H.; Lin, J.; Wang, C. Y., Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197, 297-336 (2010) · Zbl 1346.76011
[23] Lions, P.-L.; Masmoudi, N., Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77, 585-627 (1998) · Zbl 0909.35101
[24] Liu, X. G.; Hao, Y. H., Incompressible limit of a compressible liquid crystals system, Acta Math. Sci., 33, 781-796 (2013) · Zbl 1299.76211
[25] Liu, C.; Shen, J., On liquid crystal flows with free-slip boundary conditions, Discret. Contin. Dyn. Syst., 7, 307-318 (2001) · Zbl 1014.76005
[26] Liu, X.; Zhang, Z., Existence of the flow of liquid crystals system, Chin. Ann. Math., 30A, 1, 1-20 (2009) · Zbl 1199.35294
[27] Ma, S. X., Classical solutions for the compressible liquid crystal flows with nonnegative initial densities, J. Math. Anal. Appl., 397, 595-618 (2013) · Zbl 1256.35088
[28] Kawashima, S., Systems of a Hyperbolic-Parabolic Composite Type with Applications to the Equations of Magnetohydrodynamics (1983), Kyoto University: Kyoto University Kyoto, Ph.D. thesis
[29] Wang, D. H.; Yu, C., Incompressible limit for the compressible flow of liquid crystals, J. Math. Fluid Mech., 16, 771-786 (2014) · Zbl 1309.35094
[30] Wen, H. Y.; Ding, S. J., Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Anal. Real World Appl., 12, 1510-1531 (2011) · Zbl 1402.76021
[31] Yong, W.-A., Basic aspects of hyperbolic relaxation systems, (Freistühler, H.; Szepessy, A., Advances in the Theory of Shock Waves, Progress in Nonlinear Differential Equations and Their Applications, vol. 47 (2001), Birkhäuser: Birkhäuser Boston), 259-305 · Zbl 1017.35068
[32] Yong, W.-A., Singular perturbations of first-order hyperbolic systems with stiff source terms, J. Differ. Equ., 155, 89-132 (1999) · Zbl 0942.35110
[33] Yong, W.-A., A note on the zero Mach number limit of compressible Euler equations, Proc. Am. Math. Soc., 133, 3079-3085 (2005) · Zbl 1072.35563
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.