×

An \(\varepsilon \)-uniform hybrid numerical scheme for a singularly perturbed degenerate parabolic convection-diffusion problem. (English) Zbl 1499.65414

Summary: In this paper, we study the numerical solution of singularly perturbed degenerate parabolic convection-diffusion problem on a rectangular domain. The solution of the problem exhibits a parabolic boundary layer in the neighbourhood of \(x=0\). First, we use the backward-Euler finite difference scheme to discretize the time derivative of the continuous problem on uniform mesh in the temporal direction. Then, to discretize the spatial derivatives of the resulting time semidiscrete problem, we apply the hybrid finite difference scheme, which is a combination of central difference scheme and midpoint upwind scheme on piecewise uniform Shishkin mesh. We derive the error estimates, which show that the proposed hybrid scheme is \(\varepsilon \)-uniform convergent of almost second-order (up to a logarithmic factor) in space and first-order in time. Some numerical results have been carried out to validate the theoretical results.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35B25 Singular perturbations in context of PDEs
35K57 Reaction-diffusion equations
35K65 Degenerate parabolic equations
Full Text: DOI

References:

[1] Bujanda, B.; Clavero, C.; Gracia, J. L.; Jorge, J. C., A high order uniformly convergent alternating direction scheme for time dependent reaction-diffusion singularly perturbed problems, Numer. Math., 107, 1-25 (2007) · Zbl 1125.65079 · doi:10.1007/s00211-007-0083-0
[2] Cen, Z., A hybrid difference scheme for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient, J. Geophys. Res., 169, 689-699 (2005) · Zbl 1087.65071
[3] Clavero, C.; Jorge, J. C.; Lisbona, F., A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems, J. Comput. Appl. Math., 154, 415-429 (2003) · Zbl 1023.65097 · doi:10.1016/S0377-0427(02)00861-0
[4] Clavero, C.; Gracia, J.; Shishkin, G.; Shishkina, L., Grid approximation of a singularly perturbed parabolic equation with degenerating convective term and discontinuous right-hand side, Int. J. Numer. Anal. Model., 10, 795-814 (2013) · Zbl 1279.65098
[5] Dunne, R. K.; O’Riordan, E.; Shishkin, G. I., A fitted mesh method for a class of singularly perturbed parabolic problems with a boundary turning point, Comput. Methods Appl. Math., 3, 361-372 (2003) · Zbl 1036.65068 · doi:10.2478/cmam-2003-0023
[6] Dunne, R.K., O’Riordan, E., and Shishkin, G.I., Singularly perturbed parabolic problems on non-rectangular domains, Numerical Analysis and Its Applications: Second International Conference, NAA 2000 Rousse, Bulgaria, June 11-15, 2000 Revised Papers, Springer, Berlin, Heidelberg, 2001, pp. 265-272. · Zbl 0978.65079
[7] Hanks, T. C., Model relating heat-flow values near, and vertical velocities of mass transport beneath, oceanic rises, J. Geophys. Res., 76, 537-544 (1971) · doi:10.1029/JB076i002p00537
[8] Kellogg, R. B.; Tsan, A., Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp., 32, 1025-1039 (1978) · Zbl 0418.65040 · doi:10.1090/S0025-5718-1978-0483484-9
[9] Majumdar, A.; Natesan, S., Second-order uniformly convergent Richardson extrapolation method for singularly perturbed degenerate parabolic PDEs, Int. J. Appl. Comput. Math., 3, 31-53 (2017) · doi:10.1007/s40819-017-0380-y
[10] Majumdar, A.; Natesan, S., Alternating direction numerical scheme for singularly perturbed 2D degenerate parabolic convection-diffusion problems, Appl. Math. Comput., 313, 453-473 (2017) · Zbl 1427.65176
[11] Mukherjee, K.; Natesan, S., Parameter-uniform hybrid numerical scheme for time-dependent convection-dominated initial-boundary-value problems, Computing, 84, 209-230 (2009) · Zbl 1185.65149 · doi:10.1007/s00607-009-0030-2
[12] Mukherjee, K.; Natesan, S., ϵ-uniform error estimate of hybrid numerical scheme for singularly perturbed parabolic problems with interior layers, Numer. Algorithms, 58, 103-141 (2011) · Zbl 1227.65083 · doi:10.1007/s11075-011-9449-6
[13] Natesan, S.; Jayakumar, J.; Vigo-Aguiar, J., Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers, J. Comput. Appl. Math., 158, 121-134 (2003) · Zbl 1033.65061 · doi:10.1016/S0377-0427(03)00476-X
[14] Natesan, S.; Ramanujam, N., A computational method for solving singularly perturbed turning point problems exhibiting twin boundary layers, Appl. Math. Comput., 93, 259-275 (1998) · Zbl 0943.65086
[15] Natesan, S.; Ramanujam, N., Initial-value technique for singularly-perturbed turning-point problems exhibiting twin boundary layers, J. Optim. Theory Appl., 99, 37-52 (1998) · Zbl 0983.34050 · doi:10.1023/A:1021744025980
[16] Protter, M. H.; Weinberger, H. F., Maximum Principles in Differential Equations (1984), Springer-Verlag: Springer-Verlag, New York · Zbl 0549.35002
[17] Stynes, M.; Roos, H.-G., The midpoint upwind scheme, Appl. Numer. Math., 23, 361-374 (1997) · Zbl 0877.65055 · doi:10.1016/S0168-9274(96)00071-2
[18] Varah, J. M., A lower bound for the smallest singular value of a matrix, Linear Algebra Appl., 11, 3-5 (1975) · Zbl 0312.65028 · doi:10.1016/0024-3795(75)90112-3
[19] Viscor, M.; Stynes, M., A robust finite difference method for a singularly perturbed degenerate parabolic problem, part I, Int. J. Numer. Anal. Model., 7, 549-566 (2010) · Zbl 1198.65175
[20] Vulanović, R.; Farrell, P. A., Continuous and numerical analysis of a multiple boundary turning point problem, SIAM J. Numer. Anal., 30, 1400-1418 (1993) · Zbl 0787.65058 · doi:10.1137/0730073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.