×

Rough homogenisation with fractional dynamics. (English) Zbl 1499.60335

Ugolini, Stefania (ed.) et al., Geometry and invariance in stochastic dynamics. Selected papers based on the presentations at the the conference on random transformations and invariance in stochastic dynamics, Verona, Italy, March 25–29, 2019. Cham: Springer. Springer Proc. Math. Stat. 378, 137-168 (2021).
Summary: We review recent developments of slow/fast stochastic differential equations, and also present a new result on Diffusion Homogenisation Theory with fractional and non-strong-mixing noise and providing new examples. The emphasise of the review will be on the recently developed effective dynamic theory for two scale random systems with fractional noise: Stochastic Averaging and ‘Rough Diffusion Homogenisation Theory’. We also study the geometric models with perturbations to symmetries.
For the entire collection see [Zbl 1479.37003].

MSC:

60L20 Rough paths
60F05 Central limit and other weak theorems
60G22 Fractional processes, including fractional Brownian motion
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60-02 Research exposition (monographs, survey articles) pertaining to probability theory

References:

[1] Angst, J., Bailleul, I., Tardif, C.: Kinetic Brownian motion on Riemannian manifolds. Electron. J. Probab. 20(no. 110), 40 (2015) · Zbl 1329.60274
[2] Arnold, Ludwig; Imkeller, Peter; Yonghui, Wu, Reduction of deterministic coupled atmosphere-ocean models to stochastic ocean models: a numerical case study of the Lorenz-Maas system, Dyn. Syst., 18, 4, 295-350 (2003) · Zbl 1071.76045
[3] Albeverio, S.; Jorgensen, PET; Paolucci, AM, On fractional Brownian motion and wavelets, Complex Anal. Oper. Theory, 6, 1, 33-63 (2012) · Zbl 1279.42038
[4] Al-Talibi, H., Hilbert, A.: Differentiable approximation by solutions of Newton equations driven by fractional Brownian motion. Preprint (2012)
[5] Albeverio, S., De Vecchi, F.C., Morando, P., Ugolini, S.: Weak symmetries of stochastic differential equations driven by semimartingales with jumps. Electron. J. Probab. 25 (2020) · Zbl 1465.60046
[6] Bailleul, I.; Catellier, R., Rough flows and homogenization in stochastic turbulence, J. Differ. Equ., 263, 8, 4894-4928 (2017) · Zbl 1372.60078
[7] Berglund, N., Gentz, B.: Noise-induced phenomena in slow-fast dynamical systems. Probability and its Applications (New York). Springer London, Ltd., London (2006). A sample-paths approach · Zbl 1098.37049
[8] Bourguin, S., Gailus, S., Spiliopoulos, K.: Discrete-time inference for slow-fast systems driven by fractional brownian motion (2020) · Zbl 1478.60123
[9] Birrell, Jeremiah; Hottovy, Scott; Volpe, Giovanni; Wehr, Jan, Small mass limit of a Langevin equation on a manifold, Ann. Henri Poincaré, 18, 2, 707-755 (2017) · Zbl 1361.82027
[10] Bakhtin, Victor; Kifer, Yuri, Diffusion approximation for slow motion in fully coupled averaging, Probab. Theory Relat. Fields, 129, 2, 157-181 (2004) · Zbl 1069.34070
[11] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. AMS Chelsea Publishing, Providence, RI (2011) · Zbl 1229.35001
[12] Borodin, AN, A limit theorem for the solutions of differential equations with a random right-hand side, Teor. Verojatnost. i Primenen., 22, 3, 498-512 (1977) · Zbl 0412.60067
[13] Boufoussi, Brahim; Tudor, Ciprian A., Kramers-Smoluchowski approximation for stochastic evolution equations with FBM, Rev. Roumaine Math. Pures Appl., 50, 2, 125-136 (2005) · Zbl 1086.60040
[14] Bai, Shuyang; Taqqu, Murad S., Multivariate limit theorems in the context of long-range dependence, J. Time Ser. Anal., 34, 6, 717-743 (2013) · Zbl 1291.62160
[15] Brzeźniak, Z., van Neerven, J., Salopek, D.: Stochastic evolution equations driven by Liouville fractional Brownian motion. Czechoslov. Math. J. 62(137)(1), 1-27 (2012) · Zbl 1249.60109
[16] Barret, Florent; von Renesse, Max, Averaging principle for diffusion processes via Dirichlet forms, Potential Anal., 41, 4, 1033-1063 (2014) · Zbl 1317.60095
[17] Catuogno, P.J., da Silva, F.B., Ruffino, P.R.: Decomposition of stochastic flows in manifolds with complementary distributions. Stoch. Dyn. 13(4), 1350009, 12 (2013) · Zbl 1280.58024
[18] Chevyrev, I., Friz, P.K., Korepanov, A., Melbourne, I., Zhang, H.: Multiscale systems, homogenization, and rough paths. In: Probability and Analysis in Interacting Physical Systems (2019) · Zbl 1443.60060
[19] Catellier, R.; Gubinelli, M., Averaging along irregular curves and regularisation of ODEs, Stoch. Process. Appl., 126, 8, 2323-2366 (2016) · Zbl 1348.60083
[20] Cass, Thomas; Hairer, Martin; Litterer, Christian; Tindel, Samy, Smoothness of the density for solutions to Gaussian rough differential equations, Ann. Probab., 43, 1, 188-239 (2015) · Zbl 1309.60055
[21] Ciccotti, Giovanni; Lelievre, Tony; Vanden-Eijnden, Eric, Projection of diffusions on submanifolds: application to mean force computation, Comm. Pure Appl. Math., 61, 3, 371-408 (2008) · Zbl 1185.82050
[22] Cont, R.: Long range dependence in financial markets. In: Fractals in Engineering. Springer, London (2005) · Zbl 1186.91230
[23] Coutin, Laure; Qian, Zhongmin, Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Relat. Fields, 122, 1, 108-140 (2002) · Zbl 1047.60029
[24] Dolgopyat, Dmitry; Kaloshin, Vadim; Koralov, Leonid, Sample path properties of the stochastic flows, Ann. Probab., 32, 1, 1-27 (2004) · Zbl 1056.60031
[25] Dobrushin, RL; Major, P., Non-central limit theorems for nonlinear functionals of Gaussian fields, Z. Wahrsch. Verw. Gebiete, 50, 1, 27-52 (1979) · Zbl 0397.60034
[26] Dobrushin, RL, Gaussian and their subordinated self-similar random generalized fields, Ann. Probab., 7, 1, 1-28 (1979) · Zbl 0392.60039
[27] Decreusefond, L.; Üstünel, AS, Stochastic analysis of the fractional Brownian motion, Potential Anal., 10, 2, 177-214 (1999) · Zbl 0924.60034
[28] De Vecchi, F.C., Morando, P., Ugolini, S.: Symmetries of stochastic differential equations: a geometric approach. J. Math. Phys. 57(6), 063504, 17 (2016) · Zbl 1382.60081
[29] Enriquez, N., Franchi, J., Le Jan, Y.: Central limit theorem for the geodesic flow associated with a Kleinian group, case \(\delta >d/2\). J. Math. Pures Appl. (9) 80(2), 153-175 (2001) · Zbl 0986.37009
[30] Eichinger, K., Kuehn, C., Neamt, A.: Sample paths estimates for stochastic fast-slow systems driven by fractional brownian motion. J. Stat. Phys. (2020) · Zbl 1447.60098
[31] David Elworthy, K., Li, X.-M.: Intertwining and the Markov uniqueness problem on path spaces. In: Stochastic partial differential equations and applications—VII. Lecture Notes in Pure and Applied Mathematics, vol. 245, pp. 89-95. Chapman & Hall/CRC, Boca Raton, FL (2006) · Zbl 1102.60051
[32] David Elworthy, K., Le Jan, Y., Li, X.-M.: Equivariant diffusions on principal bundles. In: Stochastic analysis and related topics in Kyoto. Advanced Studies in Pure Mathematics, vol. 41, pp. 31-47. Math. Soc. Japan, Tokyo (2004) · Zbl 1071.58030
[33] David Elworthy, K., Le Jan, Y., Li, X.-M.: The geometry of filtering. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2010) · Zbl 1219.58017
[34] Feyel, Denis; de La Pradelle, Arnaud, Curvilinear integrals along enriched paths, Electron. J. Probab., 11, 34, 860-892 (2006) · Zbl 1110.60031
[35] Friz, Peter; Gassiat, Paul; Lyons, Terry, Physical Brownian motion in a magnetic field as a rough path, Trans. Amer. Math. Soc., 367, 11, 7939-7955 (2015) · Zbl 1390.60257
[36] Flandoli, Franco; Gubinelli, Massimiliano; Russo, Francesco, On the regularity of stochastic currents, fractional Brownian motion and applications to a turbulence model, Ann. Inst. Henri Poincaré Probab. Stat., 45, 2, 545-576 (2009) · Zbl 1171.76019
[37] Friz, P.K., Hairer, M.: A course on rough paths. Universitext. Springer, Cham (2014). With an introduction to regularity structures · Zbl 1327.60013
[38] Fannjiang, Albert; Komorowski, Tomasz, Fractional Brownian motions in a limit of turbulent transport, Ann. Appl. Probab., 10, 4, 1100-1120 (2000) · Zbl 1073.60532
[39] Freĭdlin, MI, Fluctuations in dynamical systems with averaging, Dokl. Akad. Nauk SSSR, 226, 2, 273-276 (1976) · Zbl 0351.34035
[40] Freidlin, MI; Wentzell, AD, Averaging principle for stochastic perturbations of multifrequency systems, Stoch. Dyn., 3, 3, 393-408 (2003) · Zbl 1050.60078
[41] Garrido-Atienza, María J.; Schmalfuss, Björn, Local stability of differential equations driven by Hölder-continuous paths with Hölder index in \((1/3,1/2)\), SIAM J. Appl. Dyn. Syst., 17, 3, 2352-2380 (2018) · Zbl 1408.37130
[42] Gallavotti, G.; Jona-Lasinio, G., Limit theorems for multidimensional Markov processes, Comm. Math. Phys., 41, 301-307 (1975) · Zbl 0343.60043
[43] Gehringer, J., Li, X.-M.: Homogenization with fractional random fields (2019). arXiv:1911.12600. (This is now improved and split into ‘Functional limit theorem for fractional OU’ and ‘Diffusive and rough homogenisation in fractional noise field’)
[44] Gehringer, J., Li, X.-M.: Diffusive and rough homogenisation in fractional noise field (2020). (Based on Part 2 of arXiv:1911.12600)
[45] Gehringer, J., Li, X.-M.: Functional limit theorem for fractional OU. J. Theoretical Probability (2020). doi:10.1007/s10959-020-01044-7 (Based on Part 1 of arXiv:1911.12600)
[46] Grahovac, Danijel; Leonenko, Nikolai N.; Taqqu, Murad S., Limit theorems, scaling of moments and intermittency for integrated finite variance supOU processes, Stoch. Process. Appl., 129, 12, 5113-5150 (2019) · Zbl 1427.60045
[47] Guerra, João; Nualart, David, Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion, Stoch. Anal. Appl., 26, 5, 1053-1075 (2008) · Zbl 1151.60028
[48] Gradinaru, Mihai; Nourdin, Ivan; Russo, Francesco; Vallois, Pierre, \(m\)-order integrals and generalized Itô’s formula: the case of a fractional Brownian motion with any Hurst index, Ann. Inst. H. Poincaré Probab. Statist., 41, 4, 781-806 (2005) · Zbl 1083.60045
[49] Gubinelli, M., Controlling rough paths, J. Funct. Anal., 216, 1, 86-140 (2004) · Zbl 1058.60037
[50] Hairer, Martin, Ergodicity of stochastic differential equations driven by fractional Brownian motion, Ann. Probab., 33, 2, 703-758 (2005) · Zbl 1071.60045
[51] Hasminskiĭ, RZ, A limit theorem for solutions of differential equations with a random right hand part, Teor. Verojatnost. i Primenen, 11, 444-462 (1966) · Zbl 0202.48601
[52] \(Has^{\prime }\) minskii, R.Z.: On the principle of averaging the Itô’s stochastic differential equations. Kybernetika (Prague) 4, 260-279 (1968) · Zbl 0231.60045
[53] Hurst, H.E., Black, R.P., Sinaika, Y.M.: Long Term Storage in Reservoirs, An Experimental Study. Constable
[54] Helland, Inge S., Central limit theorems for martingales with discrete or continuous time, Scand. J. Statist., 9, 2, 79-94 (1982) · Zbl 0486.60023
[55] Hairer, Martin; Li, Xue-Mei, Averaging dynamics driven by fractional Brownian motion, Ann. Probab., 48, 4, 1826-1860 (2020) · Zbl 1453.60087
[56] Hu, Y., Nualart, D.: Differential equations driven by Hölder continuous functions of order greater than 1/2. In: Stochastic analysis and applications. Abel Symp., vol. 2, pp. 399-413. Springer, Berlin (2007) · Zbl 1144.34038
[57] Hairer, M.; Pavliotis, GA, Periodic homogenization for hypoelliptic diffusions, J. Statist. Phys., 117, 1-2, 261-279 (2004) · Zbl 1130.82026
[58] Hairer, Martin; Pardoux, Etienne, Homogenization of periodic linear degenerate PDEs, J. Funct. Anal., 255, 9, 2462-2487 (2008) · Zbl 1167.60015
[59] Jona-Lasinio, G.: Probabilistic approach to critical behavior. In: New developments in quantum field theory and statistical mechanics (Proc. Cargèse Summer Inst., Cargèse, 1976), pp. 419-446. NATO Adv. Study Inst. Ser., Ser. B: Physics, 26 (1977)
[60] Jacod, J., Shiryaev, A.N.: Limit theorems for stochastic processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288. Springer, Berlin (2003) · Zbl 1018.60002
[61] Kryloff, N., Bogoliuboff, N.: Introduction to Non-Linear Mechanics. Annals of Mathematics Studies, no. 11. Princeton University Press, Princeton, N. J. (1943) · JFM 58.0842.19
[62] Kifer, Yuri, Averaging in dynamical systems and large deviations, Invent. Math., 110, 2, 337-370 (1992) · Zbl 0791.58072
[63] Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 345. Springer, Heidelberg (2012). Time symmetry and martingale approximation · Zbl 1396.60002
[64] Kelly, David; Melbourne, Ian, Smooth approximation of stochastic differential equations, Ann. Probab., 44, 1, 479-520 (2016) · Zbl 1372.60082
[65] Kelly, David; Melbourne, Ian, Deterministic homogenization for fast-slow systems with chaotic noise, J. Funct. Anal., 272, 10, 4063-4102 (2017) · Zbl 1373.60101
[66] Komorowski, Tomasz; Novikov, Alexei; Ryzhik, Lenya, Homogenization driven by a fractional brownian motion: the shear layer case, Multiscale Model. Simul., 12, 2, 440-457 (2014) · Zbl 1320.35046
[67] Kurtz, Thomas G.; Protter, Philip, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab., 19, 3, 1035-1070 (1991) · Zbl 0742.60053
[68] Kurtz, Thomas G., A general theorem on the convergence of operator semigroups, Trans. Amer. Math. Soc., 148, 23-32 (1970) · Zbl 0194.44103
[69] Kipnis, C.; Varadhan, SRS, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys., 104, 1, 1-19 (1986) · Zbl 0588.60058
[70] Klingenhöfer, F.; Zähle, M., Ordinary differential equations with fractal noise, Proc. Amer. Math. Soc., 127, 4, 1021-1028 (1999) · Zbl 0915.34054
[71] Lê, K.: A stochastic sewing lemma and applications. Electron. J. Probab. 25, 55 pp. (2020) · Zbl 1480.60162
[72] Ledrappier, François, Central limit theorem in negative curvature, Ann. Probab., 23, 3, 1219-1233 (1995) · Zbl 0839.58064
[73] Li, Xue-Mei, An averaging principle for a completely integrable stochastic Hamiltonian system, Nonlinearity, 21, 4, 803-822 (2008) · Zbl 1140.60033
[74] Li, X.-M.: Effective diffusions with intertwined structures (2012). arxiv:1204.3250
[75] Li, Xue-Mei, Random perturbation to the geodesic equation, Ann. Probab., 44, 1, 544-566 (2015) · Zbl 1372.60083
[76] Li, Xue-Mei, Limits of random differential equations on manifolds, Probab. Theory Relat. Fields, 166, 3-4, 659-712 (2016) · Zbl 1356.60056
[77] Li, Xue-Mei, Homogenisation on homogeneous spaces, J. Math. Soc. Japan, 70, 2, 519-572 (2018) · Zbl 1416.58014
[78] Li, X.-M.: Perturbation of conservation laws and averaging on manifolds. In: Computation and combinatorics in dynamics, stochastics and control. Abel Symp., vol. 13, pp. 499-550. Springer, Cham (2018) · Zbl 1408.60054
[79] Liverani, Carlangelo; Olla, Stefano, Toward the Fourier law for a weakly interacting anharmonic crystal, J. Amer. Math. Soc., 25, 2, 555-583 (2012) · Zbl 1245.82062
[80] Li, X.-M., Sieber, J.: Slow/fast systems with fractional environment and dynamics. In preparation (2020)
[81] Lyons, T.: Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young. Math. Res. Lett. 1(4), 451-464 (1994) · Zbl 0835.34004
[82] Mishura, Y.S.: Stochastic calculus for fractional Brownian motion and related processes. Lecture Notes in Mathematics, vol. 1929. Springer, Berlin (2008) · Zbl 1138.60006
[83] Mathieu, P.; Piatnitski, A., Steady states, fluctuation-dissipation theorems and homogenization for reversible diffusions in a random environment, Arch. Ration. Mech. Anal., 230, 1, 277-320 (2018) · Zbl 1408.35235
[84] Mandelbrot, Benoit B.; Van Ness, John W., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 422-437 (1968) · Zbl 0179.47801
[85] Neishtadt, A.I.: Averaging and passage through resonances. In: Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pp. 1271-1283. Math. Soc. Japan, Tokyo (1991) · Zbl 0780.34025
[86] Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton, N.J. (1967) · Zbl 0165.58502
[87] Nourdin, Ivan; Nualart, David; Peccati, Giovanni, Strong asymptotic independence on Wiener chaos, Proc. Amer. Math. Soc., 144, 2, 875-886 (2016) · Zbl 1339.60017
[88] Nourdin, Ivan; Nualart, David; Zintout, Rola, Multivariate central limit theorems for averages of fractional Volterra processes and applications to parameter estimation, Stat. Inference Stoch. Process., 19, 2, 219-234 (2016) · Zbl 1356.60036
[89] Nualart, David; Peccati, Giovanni, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab., 33, 1, 177-193 (2005) · Zbl 1097.60007
[90] Nourdin, I., Peccati, G.: Normal approximations with Malliavin calculus. Cambridge Tracts in Mathematics, vol. 192. Cambridge University Press, Cambridge (2012). From Stein’s method to universality · Zbl 1266.60001
[91] Neuman, E., Rosenbaum, M.: Fractional Brownian motion with zero Hurst parameter: a rough volatility viewpoint. Electron. Commun. Probab. 23(Paper No. 61), 12 (2018) · Zbl 1401.60064
[92] Nualart, D.: The Malliavin calculus and related topics. Probability and its Applications (New York), 2nd edn. Springer, Berlin (2006) · Zbl 1099.60003
[93] Perruchaud, P.: Homogénísation pour le mouvement brownien cin \(\acute{t}\) ique et quelques rśultats sur son noyau (2019). Universit \(\acute{d}\) e Rennes 1
[94] Pei, B., Inahama, Y., Xu, Y.: Averaging principles for mixed fast-slow systems driven by fractional brownian motion (2020). arXiv:Dynamical Systems
[95] Pei, B., Inahama, Y., Xu, Y.: Pathwise unique solutions and stochastic averaging for mixed stochastic partial differential equations driven by fractional brownian motion and brownian motion (2020). arXiv:Probability
[96] Papanicolaou, GC; Kohler, W., Asymptotic theory of mixing stochastic ordinary differential equations, Comm. Pure Appl. Math., 27, 641-668 (1974) · Zbl 0288.60056
[97] Pavliotis, GA; Stuart, AM; Zygalakis, KC, Homogenization for inertial particles in a random flow, Commun. Math. Sci., 5, 3, 507-531 (2007) · Zbl 1133.60338
[98] Pipiras, Vladas; Taqqu, Murad S., Integration questions related to fractional Brownian motion, Probab. Theory Relat. Fields, 118, 2, 251-291 (2000) · Zbl 0970.60058
[99] Rosenblatt, M.: Independence and dependence. In: Proceedings of 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, pp. 431-443. Univ. California Press, Berkeley, Calif. (1961) · Zbl 0105.11802
[100] Ruffino, P.R.: Application of an averaging principle on foliated diffusions: topology of the leaves. Electron. Commun. Probab. 20(no. 28), 5 (2015) · Zbl 1327.60159
[101] Röckner, M., Xie, L.: Averaging principle and normal deviations for multiscale stochastic systems (2020) · Zbl 1468.34089
[102] Skorokhod, A.V., Hoppensteadt, F.C., Salehi, H.: Random perturbation methods with applications in science and engineering. Applied Mathematical Sciences, vol. 150. Springer, New York (2002) · Zbl 0998.37001
[103] Sinaı, Ja.G.: Self-similar probability distributions. Teor. Verojatnost. i Primenen. 21(1), 63-80 (1976) · Zbl 0358.60031
[104] Skorohod, A.V.: The averaging of stochastic equations of mathematical physics. In: Problems of the asymptotic theory of nonlinear oscillations (Russian), pp. 196-208, 279 (1977) · Zbl 0416.60006
[105] Stratonovich, R.L.: Selected problems in the theory of fluctuations in radio engineering. Sov. Radio, Moscow (1961). In Russian
[106] Stratonovich, R.L.: Topics in the theory of random noise. Vol. I: General theory of random processes. Nonlinear transformations of signals and noise. Revised English edition. Translated from the Russian by Richard A. Silverman. Gordon and Breach Science Publishers, New York-London (1963)
[107] Takao, S.: Stochastic geometric mechanics for fluid modelling and mcmc, imperial college london (2020)
[108] Taqqu, Murad S., Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31, 287-302 (1975) · Zbl 0303.60033
[109] Taqqu, Murad S., Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 40, 3, 203-238 (1977) · Zbl 0358.60048
[110] Taqqu, Murad S., Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. Verw. Gebiete, 50, 1, 53-83 (1979) · Zbl 0397.60028
[111] Taqqu, M.S.: Colloquium and Workshop on Random Fields: rigorous results in statistical mechanics and quantum field theory. Cambridge Tracts in Mathematics, vol. 192. Cambridge University Press, Cambridge (1981). From Stein’s method to universality
[112] Üstünel, A.S., Zakai, M.: On independence and conditioning on Wiener space. Ann. Probab. 17(4), 1441-1453 (1989) · Zbl 0693.60046
[113] Veretennikov, AYu, On an averaging principle for systems of stochastic differential equations, Mat. Sb., 181, 2, 256-268 (1990) · Zbl 0699.60040
[114] Young, LC, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., 67, 1, 251-282 (1936) · JFM 62.0250.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.