×

Averaging principle for stochastic perturbations of multifrequency systems. (English) Zbl 1050.60078

This paper deals with the average principle for deterministic and stochastic perturbations. For a perturbed system, we suppose that the time change \(\varepsilon t\to t\) leads to the \((n+ m)\)-dimensional system,
\[ dX^\varepsilon(t)= \Biggl({1\over \varepsilon} B(X^\varepsilon(t))+ \delta(X^\varepsilon(t))\Biggr)\,dt+ \sigma(X^\varepsilon(t))\,dW(t), \]
where \(W\) is a Wiener process and the dynamics \({dX(t)\over dt}= B(X(t))\) means the nonperturbed part. Using the first integrals, \(z_1,\dots, z_n\), of system \(X\) as coordinates, the authors introduce the action-angle coordinates and reformulate the system as a diffusion,
\[ X^\varepsilon(t) =(Z^\varepsilon_1(t),\dots, Z^\varepsilon_n, \varphi^\varepsilon_1(t),\dots,\varphi^\varepsilon_m(t)) \quad (=:(Z^\varepsilon(t), \varphi^\varepsilon(t))) \]
on \([Z]\times{\mathbf T}^m\), described by stochastic differentials,
\[ \begin{aligned} dZ^\varepsilon_i(t) &= b_i(Z^\varepsilon, \varphi^\varepsilon(t))\,dt+ \sum_k \sigma^k_i(Z^\varepsilon(t), \varphi^\varepsilon(t))\,dW_k(t),\\ d\varphi^\varepsilon_j(t) &= \Biggl({1\over \varepsilon} \omega_j(Z^\varepsilon(t))+ c_j(Z^\varepsilon(t), \varphi^\varepsilon(t))\Biggr)\,dt+ \sum_k \tau^k_j(Z^\varepsilon(t), \varphi^\varepsilon(t))\,dW_k(t)\end{aligned} \]
with its starting point \((z,\varphi)\in Z\times F{\mathbf T}^m\), where \([Z]\) is the closure of the bounded set \(Z\subset\mathbb{R}^n\) and \({\mathbf T}^m\) the \(m\)-dimensional torus with one-cyclic coordinates, \(\varphi_1,\dots, \varphi_m\). \(\varphi^\varepsilon\) is the fast motion with speedvector \((\omega_1,\dots, \omega_m)\) and the problem is to characterize the limit of \(Z^\varepsilon\), as \(\varepsilon\to 0\).
Under the main assumptions that the Lebesgue measure of the set \(\{z\in Z;\omega_1(z),\dots, \omega_m(z)\) are rationally dependent} is \(0\) and some nondegeneracy on diffusion coefficients, the authors prove that the average principle of stochastic perturbations holds for any starting point, namely the distribution of \(Z^\varepsilon\) converges weakly, as \(\varepsilon\downarrow 0\), to the distribution of the diffusion process with the diffusion matrix \((\overline a_{ij})\) and drift coefficient \((\overline b_i)\), where
\[ \overline a_{ij}(z)= \int_{{\mathbf T}^m} \biggl(\sum_k \sigma^k_i(z, \varphi)\sigma^k_j(z, \varphi) \biggr)\,d\varphi \quad\text{and}\quad \overline b_i(z)= \int_{{\mathbf T}^m} b_i(z,\varphi)\,d\varphi. \]
Moreover, using this result, they derive new results for averaging of purely deterministic systems by means of small white noise type perturbations.

MSC:

60J60 Diffusion processes
34C29 Averaging method for ordinary differential equations
70K65 Averaging of perturbations for nonlinear problems in mechanics
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Anosov D. V., Izv. Akad. Nauk. SSSR Math. 24 pp 721–
[2] Arnold V. I., Sov. Math. Dok. pp 331–
[3] DOI: 10.1007/978-1-4757-1693-1 · doi:10.1007/978-1-4757-1693-1
[4] DOI: 10.1081/PDE-100107815 · Zbl 0997.35012 · doi:10.1081/PDE-100107815
[5] DOI: 10.1017/S0143385700000043 · Zbl 0997.37020 · doi:10.1017/S0143385700000043
[6] Freidlin M. I., Memoirs of American Mathematical Society 523, in: Random perturbations of Hamiltonian systems (1994) · Zbl 0804.60070
[7] DOI: 10.1007/978-1-4612-0611-8 · doi:10.1007/978-1-4612-0611-8
[8] DOI: 10.1007/978-3-642-61798-0 · Zbl 0361.35003 · doi:10.1007/978-3-642-61798-0
[9] Khasminskii R. Z., Kybernetyka 4 pp 260–
[10] DOI: 10.1007/978-1-4612-1044-3 · doi:10.1007/978-1-4612-1044-3
[11] Veretennikov A. Yu., Mat. Sbornik 181 pp 256–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.