×

Regularity of weak solutions to obstacle problems for nondiagonal quasilinear degenerate elliptic systems. (English) Zbl 1499.35285

Summary: Let \(X=\{X_1 ,\dots ,X_m\}\) be a system of smooth real vector fields satisfying Hörmander’s rank condition. We consider the interior regularity of weak solutions to an obstacle problem associated with the nonhomogeneous nondiagonal quasilinear degenerate elliptic system \[X_{\alpha }^{\ast } \left( {A_{ij}^{\alpha \beta } (x,u)X_{\beta }u^j} \right)= B_i(x,u,Xu)+X_{\alpha }^{\ast }g_i^{\alpha }(x,u,Xu).\] After proving the higher integrability and a Campanato type estimate for the weak solutions to the obstacle problem for the homogeneous nondiagonal quasilinear degenerate elliptic system, the interior Morrey regularity and Hölder continuity of weak solutions to the obstacle problem for the nonhomogeneous system are obtained.

MSC:

35J62 Quasilinear elliptic equations
35J70 Degenerate elliptic equations

References:

[1] Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147-171 (1967) · Zbl 0156.10701
[2] Campanato, S.: Equazioni ellittiche del II∘ ordine e spazi L(2,λ)\({\mathcal{L}}^{(2,\lambda )} \). Ann. Mat. Pura Appl. 69(4), 321-381 (1965) · Zbl 0145.36603
[3] Campanato, S.: Sistemi ellittici in forma divergenza. Regolarita all’interno. Quaderni. Pisa, Scuola Normale Superiore (1980) · Zbl 0453.35026
[4] Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies, vol. 105. Princeton University Press, Princeton (1983) · Zbl 0516.49003
[5] Chen, Y., Wu, L.: Second Order Elliptic Equations and Elliptic Systems. American Mathematical Society, Providence (1998), 246 pp. · Zbl 0902.35003
[6] Huang, Q.: Estimates on the generalized Morrey spaces Lφ2,λ \(L_{\varphi}^{2,\lambda }\) and BMOψ for linear elliptic systems. Indiana Univ. Math. J. 45(2), 397-439 (1996) · Zbl 0863.35023
[7] Daněček, J.; Viszus, E., L2,λ \(L^{2,\lambda }\)-regularity for nonlinear elliptic systems of second order, 33-40 (1999), New York · Zbl 0954.35053
[8] Daněček, J., Viszus, E.: A note on regularity for nonlinear elliptic systems. Arch. Math. 36(3), 229-237 (2000) · Zbl 1150.35390
[9] Daněček, J., Viszus, E.: L2,Φ \({\mathcal{L}}^{2,\varPhi }\) regularity for nonlinear elliptic systems of second order. Electron. J. Differ. Equ. 2002, 20 (2002) · Zbl 1002.49028
[10] Zheng, S., Feng, Z.: Regularity for quasi-linear elliptic systems with discontinuous coefficients. Dyn. Partial Differ. Equ. 5(1), 87-99 (2008) · Zbl 1167.35536
[11] Zheng, S., Zheng, X., Feng, Z.: Regularity for a class of degenerate elliptic equations with discontinuous coefficients under natural growth. J. Math. Anal. Appl. 346(2), 359-373 (2008) · Zbl 1186.35086
[12] Daněček, J., John, O., Stará, J.: Morrey space regularity for weak solutions of Stokes systems with VMO coefficients. Ann. Mat. Pura Appl. 190(4), 681-701 (2011) · Zbl 1238.35096
[13] Giaquinta, M.: Remarks on the regularity of weak solutions to some variational inequalities. Math. Z. 177, 15-31 (1981) · Zbl 0438.35019
[14] Choe, H.J.: A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Ration. Mech. Anal. 114(4), 383-394 (1991) · Zbl 0733.35024
[15] Choe, H.J.: Regularity for certain degenerate elliptic double obstacle problems. J. Math. Anal. Appl. 169(1), 111-126 (1992) · Zbl 0798.35057
[16] Di Fazio, G., Fanciullo, M.S.: Gradient estimates for elliptic systems in Carnot-Carathéodory spaces. Comment. Math. Univ. Carol. 43(4), 605-618 (2002) · Zbl 1090.35058
[17] Gao, D., Niu, P., Wang, J.: Partial regularity for degenerate subelliptic systems associated with Hörmander’s vector fields. Nonlinear Anal., Theory Methods Appl. 73(10), 3209-3223 (2010) · Zbl 1208.35021
[18] Zheng, S., Feng, Z.: Regularity of subelliptic p-harmonic systems with subcritical growth in Carnot group. J. Differ. Equ. 258(7), 2471-2494 (2015) · Zbl 1322.35005
[19] Dong, Y., Niu, P.: Regularity for weak solutions to nondiagonal quasilinear degenerate elliptic systems. J. Funct. Anal. 270(7), 2383-2414 (2016) · Zbl 1334.35046
[20] Tan, Z., Wang, Y., Chen, S.: Partial regularity in the interior for discontinuous inhomogeneous elliptic system with VMO-coefficients. Ann. Mat. Pura Appl. 196(1), 85-105 (2017) · Zbl 1356.74073
[21] Wang, J., Liao, D., Gao, S., Yu, Z.: Optimal partial regularity for sub-elliptic systems with Dini continuous coefficients under the superquadratic natural growth. Nonlinear Anal., Theory Methods Appl. 114, 13-25 (2015) · Zbl 1317.35274
[22] Wang, J., Manfredi, J.J.: Partial Hölder continuity for nonlinear sub-elliptic systems with VMO-coefficients in the Heisenberg group. Adv. Nonlinear Anal. 7(1), 97-116 (2018) · Zbl 1381.35020
[23] Wang, J., Liao, Q., Zhu, M., Liao, D., Hong, P.: Partial regularity for discontinuous sub-elliptic systems with VMO-coefficients involving controllable growth terms in Heisenberg groups. Nonlinear Anal., Theory Methods Appl. 178, 227-246 (2019) · Zbl 1404.35116
[24] Bigolin, F.: Regularity results for a class of obstacle problems in Heisenberg groups. Appl. Math. 58(5), 531-554 (2013) · Zbl 1299.35072
[25] Du, G., Li, F.: Global higher integrability of solutions to subelliptic double obstacle problems. J. Appl. Anal. Comput. 8(3), 1021-1032 (2018) · Zbl 1456.35093
[26] Du, G., Li, F.: Interior regularity of obstacle problems for nonlinear subelliptic systems with VMO coefficients. J. Inequal. Appl. 2018(53), 1 (2018) · Zbl 1497.35097
[27] Frentz, M.: Regularity in the obstacle problem for parabolic non-divergence operators of Hörmander type. J. Differ. Equ. 255(10), 3638-3677 (2013) · Zbl 1328.35115
[28] Gianazza, U., Marchi, S.: Interior regularity for solutions to some degenerate quasilinear obstacle problems. Nonlinear Anal., Theory Methods Appl. 36(7), 923-942 (1999) · Zbl 0939.35077
[29] Marchi, S.: Regularity for the solutions of double obstacle problems involving nonlinear elliptic operators on the Heisenberg group. Matematiche 56(1), 109-127 (2001) · Zbl 1048.35024
[30] Chow, W.L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117, 98-105 (1939) · Zbl 0022.02304
[31] Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields. I: basic properties. Acta Math. 155, 103-147 (1985) · Zbl 0578.32044
[32] Hajłasz, P., Koskela, P.: Sobolev Met Poincaré. Mem. Am. Math. Soc. vol. 688 (2000), 101 pp. · Zbl 0954.46022
[33] Lu, G.: Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition and applications. Rev. Mat. Iberoam. 8(3), 367-439 (1992) · Zbl 0804.35015
[34] Lu, G.: Embedding theorems on Campanato-Morrey spaces for vector fields of Hörmander type. Approx. Theory Appl. 14(1), 69-80 (1998) · Zbl 0916.46026
[35] Xu, C., Zuily, C.: Higher interior regularity for quasilinear subelliptic systems. Calc. Var. Partial Differ. Equ. 5(4), 323-343 (1997) · Zbl 0902.35019
[36] Zatorska-Goldstein, A.: Very weak solutions of nonlinear subelliptic equations. Ann. Acad. Sci. Fenn., Math. 30(2), 407-436 (2005) · Zbl 1082.35063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.