×

Regularity results for a class of obstacle problems in Heisenberg groups. (English) Zbl 1299.35072

Summary: We study regularity results for solutions \(u\in H W^{1,p}(\Omega )\) to the obstacle problem \[ \int _{\Omega } \mathcal {A}(x, \nabla _{\mathbb H} u)\nabla _{\mathbb H}(v-u)\,dx \geq 0 \quad \forall v\in \mathcal {K}_{\psi ,u}(\Omega ) \] such that \(u\geq \psi \) a.e. in \(\Omega \), where \(\mathcal {K}_{\psi ,u}(\Omega )= \{v\in HW^{1,p}(\Omega )\: v-u\in HW_{0}^{1,p}(\Omega ) v\geq \psi \text{ a.e. in } \Omega \}\), in Heisenberg groups \(\mathbb {H}^n\). In particular, we obtain weak differentiability in the \(T\)-direction and horizontal estimates of Calderon-Zygmund type, i.e. \[ T\psi \in HW^{1,p}_{\text{loc}}(\Omega )\Rightarrow Tu\in L^p_{\text{loc}}(\Omega ), \]
\[ | \nabla _{\mathbb H}\psi | ^p\in L^{q}_{\text{loc}}(\Omega )\Rightarrow | \nabla _{\mathbb H} u| ^p \in L^q_{\text{loc}}(\Omega ), \] where \(2<p<4\), \(q>1\).

MSC:

35D30 Weak solutions to PDEs
35J20 Variational methods for second-order elliptic equations

References:

[1] E. Acerbi, G. Mingione: Gradient estimates for a class of parabolic systems. Duke Math. J. 136 (2007), 285-320. · Zbl 1113.35105 · doi:10.1215/S0012-7094-07-13623-8
[2] V. Bögelein, F. Duzaar, G. Mingione: Degenerate problems with irregular obstacles. J. Reine Angew. Math. 650 (2011), 107-160. · Zbl 1218.35088
[3] L. A. Caffarelli: The obstacle problem revisited. J. Fourier Anal. Appl. 4 (1998), 383-402. · Zbl 0928.49030 · doi:10.1007/BF02498216
[4] L. A. Caffarelli: The regularity of free boundaries in higher dimensions. Acta Math. 139 (1978), 155-184. · Zbl 0386.35046 · doi:10.1007/BF02392236
[5] L. Capogna: Regularity of quasi-linear equations in the Heisenberg group. Commun. Pure Appl. Math. 50 (1997), 867-889. · Zbl 0886.22006 · doi:10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3
[6] L. Capogna, D. Danielli, N. Garofalo: An embedding theorem and the Harnack inequality for nonlinear subelliptic equations. Commun. Partial Differ. Equations 18 (1993), 1765-1794. · Zbl 0802.35024 · doi:10.1080/03605309308820992
[7] L. Capogna, D. Danielli, S. D. Pauls, J. T. Tyson: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics 259. Birkhäuser, Basel, 2007. · Zbl 1138.53003
[8] H. J. Choe: A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Ration. Mech. Anal. 114 (1991), 383-394. · Zbl 0733.35024 · doi:10.1007/BF00376141
[9] G. Citti, A. Sarti: A cortical based model of perceptual completion in the rototranslation space. J. Math. Imaging Vision 24 (2006), 307-326. · Zbl 1478.92100 · doi:10.1007/s10851-005-3630-2
[10] G. Cupini, N. Fusco, R. Petti: Hölder continuity of local minimizers. J. Math. Anal. Appl. 235 (1999), 578-597. · Zbl 0949.49022 · doi:10.1006/jmaa.1999.6410
[11] D. Danielli: Regularity at the boundary for solutions of nonlinear subelliptic equations. Indiana Univ. Math. J. 44 (1995), 269-286. · Zbl 0828.35022 · doi:10.1512/iumj.1995.44.1988
[12] D. Danielli, N. Garofalo, A. Petrosyan: The sub-elliptic obstacle problem: \[ \mathcal{C}^{1,\alpha }\] regularity of the free boundary in Carnot groups of step two. Adv. Math. 211 (2007), 485-516. · Zbl 1114.35050 · doi:10.1016/j.aim.2006.08.008
[13] E. DiBenedetto, J. Manfredi: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Am. J. Math. 115 (1993), 1107-1134. · Zbl 0805.35037 · doi:10.2307/2375066
[14] A. Domokos: Differentiability of solutions for the non-degenerate p-Laplacian in the Heisenberg group. J. Differ. Equations 204 (2004), 439-470. · Zbl 1065.35103 · doi:10.1016/j.jde.2004.05.009
[15] A. Domokos: On the regularity of subelliptic p-harmonic functions in Carnot groups. Nonlinear Anal., Theory Methods Appl. 69 (2008), 1744-1756. · Zbl 1165.35006 · doi:10.1016/j.na.2007.07.020
[16] A. Domokos, J. J. Manfredi: Subelliptic Cordes estimates. Proc. Am. Math. Soc. 133 (2005), 1047-1056. · Zbl 1081.35015 · doi:10.1090/S0002-9939-04-07819-0
[17] Domokos, A.; Manfredi, J. J.; Poggi-Corradini, P. (ed.), \[{C^{1,\alpha }}\]-regularity for p-harmonic functions in the Heisenberg group for p near 2. The p-harmonic Equation and Recent Advances in Analysis, No. 370, 17-23 (2005), Providence · Zbl 1073.22004
[18] M. Eleuteri: Regularity results for a class of obstacle problems. Appl. Math., Praha 52 (2007), 137-170. · Zbl 1164.49009
[19] M. Eleuteri, J. Habermann: Calderón-Zygmund type estimates for a class of obstacle problems with p(x) growth. J. Math. Anal. Appl. 372 (2010), 140-161. · Zbl 1211.49046 · doi:10.1016/j.jmaa.2010.05.072
[20] M. Fuchs, G. Mingione: Full C1,a-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscr. Math. 102 (2000), 227-250. · Zbl 0995.49023 · doi:10.1007/s002291020227
[21] P. Goldstein, A. Zatorska-Goldstein: Calderon-Zygmund type estimates for nonlinear systems with quadratic growth on the Heisenberg group. Forum Math. 20 (2008), 679-710. · Zbl 1160.35356 · doi:10.1515/FORUM.2008.033
[22] Gromov, M.; Bellaïche, A. (ed.); etal., Carnot-Carathéodory spaces seen from within. Sub-Riemannian Geometry, No. 144, 79-323 (1996), Basel · Zbl 0864.53025
[23] J. Heinonen, T. Kilpeläinen, O. Martio: Nonlinear potential theory of degenerate elliptic equations. Unabridged republication of the 1993 original. Dover Publications, Mineola, 2006. · Zbl 1115.31001
[24] L. Hörmander: Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147-171. · Zbl 0156.10701 · doi:10.1007/BF02392081
[25] T. Iwaniec: Projections onto gradient fields and Lp-estimates for degenerated elliptic operators. Stud. Math. 75 (1983), 293-312. · Zbl 0552.35034
[26] H. Lewy: An example of a smooth linear partial differential equation with solution. Ann. Math. 66 (1957), 155-158. · Zbl 0078.08104 · doi:10.2307/1970121
[27] J. L. Lions, G. Stampacchia: Variational inequalities. Commun. Pure Appl. Math. 20 (1967), 493-519. · Zbl 0152.34601 · doi:10.1002/cpa.3160200302
[28] J. J. Manfredi, G. Mingione: Regularity results for quasilinear elliptic equations in the Heisenberg group. Math. Ann. 339 (2007), 485-544. · Zbl 1128.35034 · doi:10.1007/s00208-007-0121-3
[29] S. Marchi: Regularity for the solutions of double obstacle problems involving nonlinear elliptic operators on the Heisenberg group. Matematiche 56 (2001), 109-127. · Zbl 1048.35024
[30] G. Mingione: The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6 (2007), 195-261. · Zbl 1178.35168
[31] G. Mingione: Calderón-Zygmund estimates for measure data problems. C. R., Math., Acad. Sci. Paris 344 (2007), 437-442. · Zbl 1190.35088 · doi:10.1016/j.crma.2007.02.005
[32] G. Mingione, A. Zatorska-Goldstein, X. Zhong: Gradient regularity for elliptic equations in the Heisenberg group. Adv. Math. 222 (2009), 62-129. · Zbl 1175.35033 · doi:10.1016/j.aim.2009.03.016
[33] J. Mu, W. P. Ziemer: Smooth regularity of solutions of double obstacle problems involving degenerate elliptic equations. Commun. Partial Differ. Equations 16 (1991), 821-843. · Zbl 0742.35010 · doi:10.1080/03605309108820780
[34] J.-F. Rodrigues: Obstacle Problems in Mathematical Physics. North-Holland Mathematics Studies 134. North-Holland, Amsterdam, 1987. · Zbl 0606.73017 · doi:10.1016/S0304-0208(08)70164-6
[35] G. Stampacchia: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci., Paris 258 (1964), 4413-4416. (In French.) · Zbl 0124.06401
[36] E. M. Stein: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the Assistance of Timothy S. Murphy. Princeton Mathematical Series 43. Princeton University Press, Princeton, 1993. · Zbl 0821.42001
[37] H. J. Sussmann: Geometry and optimal control. Mathematical Control Theory. With a Foreword by Sanjoy K.Mitter. Dedicated to Roger Ware Brockett on the occasion of his 60th birthday (J.B. Baillieul et al., eds.). Springer, 1998, pp. 140-198. · Zbl 0904.00033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.