×

A multivariate Chebyshev bound of the Selberg form. (English. Russian original) Zbl 1498.93771

Autom. Remote Control 83, No. 8, 1180-1199 (2022); translation from Avtom. Telemekh. 2022, No. 8, 38-64 (2022).
Summary: The least upper bound for the probability that a random vector with fixed mean and covariance will be outside the ball is found. This probability bound is determined by solving a scalar equation and, in the case of identity covariance matrix, is given by an analytical expression, which is a multivariate generalization of the Selberg bound. It is shown that at low probability levels, it is more typical when the bound is given by the new expression if compared with the case when it coincides with the right-hand side of the well-known Markov inequality. The obtained result is applied to solving the problem of hypothesis testing by using an alternative with uncertain distribution.

MSC:

93E20 Optimal stochastic control
93B35 Sensitivity (robustness)

Software:

SeDuMi; CVX
Full Text: DOI

References:

[1] Lin, F.; Fang, X.; Gao, Z., Distributionally robust optimization: a review on theory and applications, Numer. Algebra Control & Optim., 12, 1, 159-212 (2022) · Zbl 1485.90083 · doi:10.3934/naco.2021057
[2] Karlin, S.; Studden, W. J., Tchebycheff Systems: with Applications in Analysis and Statistics (1966), New York: Wiley-Interscience, New York · Zbl 0153.38902
[3] Krein, M.G. and Nudelman, A.A., The Markov Moment Problem and Extremal Problems. Translation of Mathematical Monographs, Providence, R.I.: Am. Math. Soc., 1977, vol. 50. · Zbl 0361.42014
[4] Marshall, A. W.; Olkin, I., Multivariate Chebyshev inequalities, Ann. Math. Stat., 31, 4, 1001-1014 (1960) · Zbl 0244.60013 · doi:10.1214/aoms/1177705673
[5] El Ghaoui, L.; Oks, M.; Oustry, F., Worst-case value-at-risk and robust portfolio optimization: a conic programming approach, Oper. Res., 51, 4, 543-556 (2003) · Zbl 1165.91397 · doi:10.1287/opre.51.4.543.16101
[6] Popescu, I., Robust mean-covariance solutions for stochastic optimization and applications, Oper. Res., 55, 1, 98-112 (2007) · Zbl 1167.90611 · doi:10.1287/opre.1060.0353
[7] Pankov, A. R.; Semenikhin, K. V., Minimax estimation by probabilistic criterion, Autom. Remote Control, 68, 3, 430-445 (2007) · Zbl 1125.93064 · doi:10.1134/S0005117907030058
[8] Semenikhin, K. V., Minimax nature of the linear estimates of the indefinite stochastic vector from the generalized probabilistic criteria, Autom. Remote Control, 68, 11, 1970-1985 (2007) · Zbl 1146.93045 · doi:10.1134/S0005117907110070
[9] Delage, E.; Ye, Y., Distributionally robust optimization under moment uncertainty with application to data-driven problems, Oper. Res., 58, 595-612 (2010) · Zbl 1228.90064 · doi:10.1287/opre.1090.0741
[10] Zymler, S.; Kuhn, D.; Rustem, B., Distributionally robust joint chance constraints with second-order moment information, Math. Programming, 137, 167-198 (2013) · Zbl 1286.90103 · doi:10.1007/s10107-011-0494-7
[11] Kitahara, T.; Mizuno, S.; Nakata, K., Quadratic and convex minimax classification problems, J. Oper. Res. Soc. Jpn., 51, 2, 191-201 (2008) · Zbl 1279.90125
[12] Stellato, B.; Van Parys, B. P.G.; Goulart, P. J., Multivariate Chebyshev inequality with estimated mean and variance, Am. Stat., 71, 2, 123-127 (2017) · Zbl 07671789 · doi:10.1080/00031305.2016.1186559
[13] Vandenberghe, L.; Boyd, S.; Comanor, K., Generalized Chebyshev bounds via semidefinite programming, SIAM Rev., 49, 1, 52-64 (2007) · Zbl 1151.90512 · doi:10.1137/S0036144504440543
[14] Csiszar, V.; Fegyverneki, T.; Mori, T. F., Explicit multivariate bounds of Chebyshev type, Ann. Univ. Sci. Budapest Sec. Comput., 42, 109-125 (2014) · Zbl 1313.60014
[15] Csiszar, V.; Mori, T. F., A Bienaymé-Chebyshev inequality for scale mixtures of the multivariate normal distribution, Math. Inequalities & Appl., 12, 4, 839-844 (2009) · Zbl 1181.60024 · doi:10.7153/mia-12-67
[16] Bertsimas, D.; Popescu, I., Optimal inequalities in probability theory: a convex optimization approach, SIAM J. Optim., 15, 3, 780-804 (2005) · Zbl 1077.60020 · doi:10.1137/S1052623401399903
[17] Van Parys, B. P.G.; Goulart, P. J.; Kuhn, D., Generalized Gauss inequalities via semidefinite programming, Math. Programming, 156, 271-302 (2016) · Zbl 1351.90125 · doi:10.1007/s10107-015-0878-1
[18] Barmish, B. R.; Lagoa, C. M., The uniform distribution: a rigorous justification for its use in robustness analysis, Math. Control Signals Syst., 10, 203-222 (1997) · Zbl 0892.93042 · doi:10.1007/BF01211503
[19] Kibzun, A. I., On the worst-case distribution in stochastic optimization problems with probability function, Autom. Remote Control, 59, 11, 1587-1597 (1998) · Zbl 1072.90560
[20] Kan, Yu. S., On the justification of the uniformity principle in the optimization of a probability performance index, Autom. Remote Control, 61, 1, 50-64 (2000) · Zbl 1055.60004
[21] Sturm, J. F., Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones, Optim. Methods Software, 11, 12, 625-653 (1999) · Zbl 0973.90526 · doi:10.1080/10556789908805766
[22] Grant, M.C. and Boyd S.P., The CVX Users’ Guide. Release 2.1, CVX Research, Inc., 2018. Available at http://cvxr.com/cvx .
[23] Platonov, E. N.; Semenikhin, K. V., Methods for minimax estimation under elementwise covariance uncertainty, Autom. Remote Control, 77, 5, 817-838 (2016) · Zbl 1346.93362 · doi:10.1134/S0005117916050064
[24] Albert, A., Regression and the Moore-Penrose Pseudoinverse (1972), New York: Academic Press, New York · Zbl 0253.62030
[25] Ioffe, A. D.; Tihomirov, V. M., Theory of Extremal Problems (1979), New York: Elsevier, New York · Zbl 0407.90051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.