×

Testing marginal symmetry of digital noise images through the perimeter of excursion sets. (English) Zbl 1498.62181

Summary: In this paper we consider digital images for which the pixels values are given by a sequence of independent and identically distributed variables within an observation window. We proceed to the construction of an unbiased estimator for the perimeter without border effects. The study of the first and second moments of the perimeter allows to prove auto-normalised asymptotic normality results with an explicit covariance matrix consistently estimated. Theses Central Limit Theorems permit to built a consistent and empirical accessible test statistic to test the symmetry of the marginal distribution. Finally the asymptotic perimeter behaviour in large threshold limit regime is also explored. Several numerical studies are provided to illustrate the proposed testing procedures.

MSC:

62M40 Random fields; image analysis
60G60 Random fields
60F05 Central limit and other weak theorems
62G10 Nonparametric hypothesis testing
62E20 Asymptotic distribution theory in statistics
68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

References:

[1] P. A. R. Ade, N. Aghanim, Y. Akrami, P. K. Aluri, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, and et al. Planck 2015 results: XVI. Isotropy and statistics of the CMB. Astronomy & Astrophysics, 594:A16, 2016.
[2] R. J. Adler. The Geometry of Random Field. John Wiley & Sons, 1981. · Zbl 0478.60059
[3] J. M. Azaïs and M. Wschebor. Level sets and extrema of random processes and fields. John Wiley & Sons, 2009. · Zbl 1168.60002
[4] H. Biermé, E. Di Bernardino, C. Duval, and A. Estrade. Lipschitz-Killing curvatures of excursion sets for two-dimensional random fields. Electronic Journal of Statistics, 13(1):536-581, 2019. · Zbl 1406.60076
[5] Hermine Biermé and Agnès Desolneux. The effect of discretization on the mean geometry of a 2d random field. Annales Henri Lebesgue, 2021. · Zbl 1464.60049
[6] P. Billingsley. Probability and Measure (3 ed.). John Wiley and Sons, 1995. · Zbl 0822.60002
[7] C. Butler. A test for symmetry using the sample distribution function. The Annals of Mathematical Statistics, 40(6):2209-2210, 1969. · Zbl 0214.46002
[8] S.N. Chiu, D. Stoyan, W.S. Kendall, and J. Mecke. Stochastic Geometry and Its Applications. Wiley Series in Probability and Statistics. Wiley, 2013. · Zbl 1291.60005
[9] S. Csörgő and C. R. Heathcote. Testing for Symmetry. Biometrika, 74(1):177-184, 1987. · Zbl 0606.62049
[10] R. D’Agostino and E. S. Pearson. Tests for departure from normality. Empirical results for the distributions of \[{b^2}\] and \[\sqrt{{b_1}} \] . Biometrika, 60(3):613-622, 12 1973. · Zbl 0271.62025
[11] F. Dalmao, J. León, and E. Mordecki. Asymptotic normality of high level-large time crossings of a Gaussian process. Stochastic Processes and their Applications, 06 2017. · Zbl 1486.60042
[12] A. Desolneux. Stochastic methods for image analysis. In Stochastic geometry, volume 2237 of Lecture Notes in Math., pages 87-127. Springer, Cham, 2019.
[13] E. Di Bernardino and C. Duval. Statistics for Gaussian random fields with unknown location and scale using Lipschitz-Killing curvatures. Scandinavian Journal of Statistics, n/a(n/a):1-42, 2020.
[14] E. Di Bernardino, J. León, and T. Tchumatchenko. Cross-Correlations and Joint Gaussianity in Multivariate Level Crossing Models. Journal of mathematical neuroscience, 4:22, 04 2014. · Zbl 1291.92031
[15] Bruno Ebner, Norbert Henze, Michael A. Klatt, and Klaus Mecke. Goodness-of-fit tests for complete spatial randomness based on Minkowski functionals of binary images. Electronic Journal of Statistics, 12(2):2873 - 2904, 2018. · Zbl 1404.62045
[16] A. Estrade and J. R. León. A central limit theorem for the Euler characteristic of a Gaussian excursion set. The Annals of Probability, 44(6):3849-3878, 2016. · Zbl 1367.60016
[17] G. Flandin and K. J. Friston. Topological inference. In Arthur W. Toga, editor, Brain Mapping: an Encyclopedic Reference, pages 495-500. Academic Press, 2015.
[18] J. R. Gott, D. C. Hambrick, M. S. Vogeley, J. Kim, C. Park, Y-Y. Choi, R. Cen, J. P. Ostriker, and K. Nagamine. Genus Topology of Structure in the Sloan Digital Sky Survey: Model Testing. The Astrophysical Journal, 675(1):16, 2008.
[19] M. K. Gupta. An asymptotically nonparametric test of symmetry. Ann. Math. Statist., 38:849-866, 1967. · Zbl 0157.48102
[20] L. Heinrich. Stable limit theorems for sums of multiply indexed m-dependent random variables. Mathematische Nachrichten, 127(1):193-210, 1986. · Zbl 0609.60033
[21] B. Ivanovic, B. Miloševic, and M. Obradovic. Comparison of symmetry tests against some skew-symmetric alternatives in i.i.d. and non-i.i.d. setting. Computational Statistics & Data Analysis, 151(C), 2020. · Zbl 07345924
[22] B. Jähne. Digital Image Processing 6th Edition. Springer, Berlin [u.a.], 2005.
[23] M. Kratz and S. Vadlamani. Central limit theorem for Lipschitz-Killing curvatures of excursion sets of Gaussian random fields. Journal of Theoretical Probability, 2017. · Zbl 1404.60034
[24] R. Lachièze-Rey. Bicovariograms and Euler characteristic of random fields excursions. Stochastic Processes and their Applications, 129(11):4687-4703, 2019. · Zbl 1448.60112
[25] R. Lachièze-Rey. Normal convergence of nonlocalised geometric functionals and shot-noise excursions. Ann. Appl. Probab., 29(5):2613-2653, 2019. · Zbl 1448.60057
[26] Douglas E. Lake and Daniel M. Keenan. Identifying minefields in clutter via collinearity and regularity detection, volume 2496. SPIE, 1995.
[27] D. Marinucci. Testing for non-Gaussianity on cosmic microwave background radiation: a review. Statist. Sci., 19(2):294-307, 2004. · Zbl 1100.62636
[28] A. Mira. Distribution-free test for symmetry based on Bonferroni’s measure. Journal of Applied Statistics, 26, 03 1997.
[29] W. K. Pratt. Digital Image Processing. John Wiley & Sons, Inc., USA, 1978.
[30] J. F. Quessy. On Consistent Nonparametric Statistical Tests of Symmetry Hypotheses. Symmetry, 8, 2016. · Zbl 1380.62200
[31] J. Schmalzing and K. M. Górski. Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps. Monthly Notices of the Royal Astronomical Society, 297(2):355-365, June 1998.
[32] R. Schneider and W. Weil. Stochastic and integral geometry. Probability and its Applications. Springer-Verlag, Berlin, 2008. · Zbl 1175.60003
[33] C. Thäle. 50 years sets with positive reach - a survey. Surveys in Mathematics and its Applications, 3:123-165, 2008. · Zbl 1173.49039
[34] K. J. Worsley. Local maxima and the expected Euler characteristic of excursion sets of \[{\chi^2},\hspace{3.33252pt}F\] and \(t\) fields. Advances in Applied Probability, 26(1):13-42, 1994. · Zbl 0797.60042
[35] M. Wschebor. Surfaces aléatoires: mesure géométrique des ensembles de niveau, volume 1147. Springer, 2006. · Zbl 0573.60017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.