×

Lipschitz-Killing curvatures of excursion sets for two-dimensional random fields. (English) Zbl 1406.60076

Summary: In the present paper we study three geometrical characteristics for the excursion sets of a two-dimensional stationary isotropic random field. First, we show that these characteristics can be estimated without bias if the considered field satisfies a kinematic formula, this is for instance the case of fields given by a function of smooth Gaussian fields or of some shot noise fields. By using the proposed estimators of these geometric characteristics, we describe some inference procedures for the estimation of the parameters of the field. An extensive simulation study illustrates the performances of each estimator. Then, we use the Euler characteristic estimator to build a test to determine whether a given field is Gaussian or not, when compared to various alternatives. The test is based on a sparse information, i.e., the excursion sets for two different levels of the field to be tested. Finally, the proposed test is adapted to an applied case, synthesized 2D digital mammograms.

MSC:

60G60 Random fields
62F12 Asymptotic properties of parametric estimators
62F03 Parametric hypothesis testing
60G10 Stationary stochastic processes

References:

[1] R. J. Adler and J. E. Taylor., Random fields and geometry. Springer Monographs in Mathematics. Springer, New York, 2007. · Zbl 1149.60003
[2] R. J. Adler and J. E. Taylor., Topological complexity of smooth random functions, volume 2019 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. Lectures from the 39th Probability Summer School held in Saint-Flour, 2009, École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School].
[3] J. M. Azaïs and M. Wschebor., Level sets and extrema of random processes and fields. John Wiley & Sons, 2009. · Zbl 1168.60002
[4] F. Baccelli and B. Błaszczyszyn., Stochastic Geometry and Wireless Networks, Volume I - Theory, volume 3, No 3-4 of Foundations and Trends in Networking. NoW Publishers, 2009. · Zbl 1184.68015
[5] C. Berzin. Estimation of Local Anisotropy Based on Level Sets., ArXiv e-prints :1801.03760, January 2018. · Zbl 1493.62217
[6] H. Biermé and A. Desolneux. On the perimeter of excursion sets of shot noise random fields., The Annals of Probability, 44(1):521-543, 2016. · Zbl 1343.60060 · doi:10.1214/14-AOP980
[7] A. Bulinski, E. Spodarev, and F. Timmermann. Central limit theorems for the excursion set volumes of weakly dependent random fields., Bernoulli, 18(1):100-118, 2012. · Zbl 1239.60017 · doi:10.3150/10-BEJ339
[8] E. M Cabaña. Affine processes: a test of isotropy based on level sets., SIAM Journal on Applied Mathematics, 47(4):886-891, 1987. · Zbl 0627.62088 · doi:10.1137/0147059
[9] S.N. Chiu, D. Stoyan, W.S. Kendall, and J. Mecke., Stochastic Geometry and Its Applications. Wiley Series in Probability and Statistics. Wiley, 2013. · Zbl 1291.60005
[10] E. Di Bernardino, A. Estrade, and J. R. León. A test of Gaussianity based on the Euler Characteristic of excursion sets., Electronic Journal of Statistics, 11(1):843-890, 2017. · Zbl 1362.62098 · doi:10.1214/17-EJS1248
[11] B. Ebner, N. Henze, M. A. Klatt, and K. Mecke. Goodness-of-fit tests for complete spatial randomness based on Minkowski functionals of binary images., Electronic Journal of Statistics, 12(2) :2873-2904, 2018. · Zbl 1404.62045 · doi:10.1214/18-EJS1467
[12] T.W. Epps. Testing that a stationary time series is Gaussian., The Annals of Statistics, pages 1683-1698, 1987. · Zbl 0644.62093 · doi:10.1214/aos/1176350618
[13] H. Federer. Curvature measures., Transactions of the American Mathematical Society, 93(3):418-491, 1959. · Zbl 0089.38402 · doi:10.1090/S0002-9947-1959-0110078-1
[14] J. Fournier. Identification and isotropy characterization of deformed random fields through excursion sets., Advances in Applied Probrobability, 50:706-725, 2018. · Zbl 1436.62452
[15] J. R. Gott, W. N. Colley, C-G Park, C. Park, and C. Mugnolo. Genus topology of the cosmic microwave background from the WMAP 3-year data., Monthly Notices of the Royal Astronomical Society, 377(4) :1668-1678, 2007.
[16] J. R. Gott, D. C. Hambrick, M. S. Vogeley, J. Kim, C. Park, Y-Y. Choi, R. Cen, J. P. Ostriker, and K. Nagamine. Genus topology of structure in the Sloan Digital Sky Survey: Model testing., The Astrophysical Journal, 675(1):16, 2008.
[17] D. Hug, G. Last, and M. Schulte. Second-order properties and central limit theorems for geometric functionals of Boolean models., The Annals of Applied Probability, 26(1):73-135, 2016. · Zbl 1348.60013 · doi:10.1214/14-AAP1086
[18] M. Kratz and S. Vadlamani. Central limit theorem for Lipschitz-Killing curvatures of excursion sets of Gaussian random fields., Journal of Theoretical Probability, 31(3) :1729-1758, 2017. · Zbl 1404.60034 · doi:10.1007/s10959-017-0760-6
[19] R. Lachièze-Rey. Shot-noise excursions and non-stabilizing Poisson functionals., ArXiv e-prints 1712.01558, December 2017.
[20] Z. Li, A. Desolneux, S. Muller, and A. K. Carton. A novel 3D stochastic solid breast texture model for x-ray breast imaging. In Anders Tingberg, Kristina Lång, and Pontus Timberg, editors, Breast Imaging, pages 660-667, Cham, 2016. Springer International Publishing.
[21] G. Lindgren. Spectral moment estimation by means of level crossings., Biometrika, 61(2):401-418, 1974. · Zbl 0292.62063 · doi:10.1093/biomet/61.2.401
[22] G. Lindgren. Wave analysis by slepian models., Probabilistic engineering mechanics, 15(1):49-57, 2000.
[23] M. S Longuet-Higgins. The statistical analysis of a random, moving surface., Philosophical Transactions of the Royal Society A, 249(966):321-387, 1957. · Zbl 0077.12707 · doi:10.1098/rsta.1957.0002
[24] D. Müller. A central limit theorem for Lipschitz-Killing curvatures of gaussian excursions., Journal of Mathematical Analysis and Applications, 452(2) :1040-1081, 2017. · Zbl 1373.60054 · doi:10.1016/j.jmaa.2017.03.036
[25] A. Nieto-Reyes, J. A. Cuesta-Albertos, and F. Gamboa. A random-projection based test of Gaussianity for stationary processes., Computational Statistics & Data Analysis, 75:124-141, 2014. · Zbl 1506.62137 · doi:10.1016/j.csda.2014.01.013
[26] U. Pantle, V. Schmidt, and E. Spodarev. On the estimation of integrated covariance functions of stationary random fields., Scandinavian Journal of Statistics, 37(1):47-66, 2010. · Zbl 1224.62095 · doi:10.1111/j.1467-9469.2009.00663.x
[27] T. R. Reddy, S. Vadlamani, and D. Yogeshwaran. Central limit theorem for exponentially quasi-local statistics of spin models on cayley graphs., Journal of Statistical Physics, 173:941-984, 2018. · Zbl 1405.82011 · doi:10.1007/s10955-018-2026-9
[28] K. Sato., Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2013. Translated from the 1990 Japanese original, Revised edition of the 1999 English translation. · Zbl 1287.60003
[29] J. Schmalzing and K. M. Górski. Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps., Monthly Notices of the Royal Astronomical Society, 297(2):355-365, June 1998.
[30] R. Schneider and W. Weil., Stochastic and integral geometry. Probability and its Applications. Springer-Verlag, Berlin, 2008. · Zbl 1175.60003
[31] E. Spodarev. Limit theorems for excursion sets of stationary random fields. In, Modern stochastics and applications, volume 90 of Springer Optim. Appl., pages 221-241. Springer, Cham, 2014. · Zbl 1322.60014
[32] D. Stoyan and H. Stoyan., Fractals, random shapes, and point fields: methods of geometrical statistics. Wiley series in probability and mathematical statistics: Applied probability and statistics. Wiley, 1994. · Zbl 0828.62085
[33] C. Thäle. 50 years sets with positive reach - a survey., Surveys in Mathematics and its Applications, 3:123-165, 2008. · Zbl 1173.49039
[34] K. J. Worsley. Local maxima and the expected Euler characteristic of excursion sets of \(\chi^2,\ F\) and \(t\) fields., Advances in Applied Probability, 26(1):13-42, 1994. · Zbl 0797.60042 · doi:10.2307/1427576
[35] M. Wschebor., Surfaces aléatoires: mesure géométrique des ensembles de niveau, volume 1147. Springer, 2006. · Zbl 0573.60017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.