×

Weak approximation of SDEs for tempered distributions and applications. (English) Zbl 1498.60189

Summary: The paper shows a new weak approximation for generalized expectation of composition of a Schwartz tempered distribution and a solution to stochastic differential equation. Any order discretization is provided by using stochastic weights which do not depend on the Schwartz distribution. The error bound is obtained through stochastic analysis, which is consistent with the results of numerical experiments. It can also be confirmed that the proposed approximation gives high numerical accuracy.

MSC:

60H07 Stochastic calculus of variations and the Malliavin calculus
60H30 Applications of stochastic analysis (to PDEs, etc.)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
60J60 Diffusion processes
65C05 Monte Carlo methods
Full Text: DOI

References:

[1] Aït-Sahalia, Y., Li, C., Li, C. X.: Maximum likelihood estimation of latent markov models using Closed-Form approximations. J. Econom., forthcoming (2021)
[2] Aït-Sahalia, Y., Li, C., Li, C. X.: Closed-form implied volatility surfaces for stochastic volatility models with jumps. J. Econom., forthcoming (2021) · Zbl 1471.91557
[3] Bally, V.; Talay, D., The law of the Euler scheme for stochastic differential equations I. Convergence rate of the distribution function, Probab. Theory Relat. Fields, 104, 43-60 (1996) · Zbl 0838.60051 · doi:10.1007/BF01303802
[4] Bayer, C.; Friz, P.; Loeffen, R., Semi-closed form cubature and applications to financial diffusion models, Quant. Finance, 13, 769-782 (2010) · Zbl 1281.91180 · doi:10.1080/14697688.2012.752102
[5] Cai, N.; Li, C.; Shi, C., Closed-form expansions of discretely monitored asian options in diffusion models, Math. Oper. Res., 39, 3, 789-822 (2014) · Zbl 1334.60118 · doi:10.1287/moor.2013.0619
[6] Ditlevsen, S.; Samson, A., Hypoelliptic diffusions: discretization, filtering and inference from complete and partial observations, J. R. Stat. Soc. B, 81, 361-384 (2019) · Zbl 1420.62094 · doi:10.1111/rssb.12307
[7] Friedman, A., Partial Differential Equations of Parabolic Type (1964), New Jersey: Prentice-Hall Inc, New Jersey · Zbl 0144.34903
[8] Gobet, E.; Labart, C., Sharp estimates for the convergence of the density of the Euler scheme in small time, Electron. Commun. Probab., 13, 352-363 (2008) · Zbl 1188.65007 · doi:10.1214/ECP.v13-1393
[9] Gyurkó, LG; Lyons, T., Efficient and Practical Implementations of Cubature on Wiener space. Stochastic Analysis 2010, 73-111 (2010), Berlin: Springer, Berlin · Zbl 1221.65009
[10] Guyon, J., Euler schemes and tempered distributions, Stoch. Process. Appl., 116, 877-904 (2006) · Zbl 1106.60053 · doi:10.1016/j.spa.2005.11.011
[11] Hayashi, M.; Ishikawa, Y., Composition with distributions of Wiener-Poisson variables and its asymptotic expansion, Math. Nach., 285, 5-6, 619-658 (2012) · Zbl 1252.60051 · doi:10.1002/mana.200910194
[12] Iguchi, Y., Yamada, T.: A second order discretization for degenerate systems of stochastic differential equations. IMA J. Numer. Anal., to appear (2020) · Zbl 1507.65028
[13] Iguchi, Y., Yamada, T.: Operator splitting around Euler-Maruyama scheme and high order discretization of heat kernels. ESAIM: Math. Model. Numer. Anal., to appear (2020) · Zbl 1479.58024
[14] Ikeda, N., Watanabe, S: Stochastic Differential Equations and Diffusion processes, 2nd edn. North-Holland Mathematical Library (1989) · Zbl 0684.60040
[15] Kusuoka, S., Approximation of expectation of diffusion process and mathematical finance, Adv. Stud. Pure Math., 31, 147-165 (2001) · Zbl 1028.60052 · doi:10.2969/aspm/03110147
[16] Kusuoka, S., Approximation of expectation of diffusion process based on lie algebra and Malliavin calculus, Adv. Math. Econ., 6, 69-83 (2004) · Zbl 1111.60035 · doi:10.1007/978-4-431-68450-3_4
[17] Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus Part I. Stoch. Anal. (Katata/Kyoto 1982) 271-306 (1984) · Zbl 0546.60056
[18] Li, C., Maximum-likelihood estimation for diffusion process via closed-form density expansions, Ann. Stat., 41, 3, 1350-1380 (2013) · Zbl 1273.62196 · doi:10.1214/13-AOS1118
[19] Li, C.; Chen, D., Estimating jump-diffusions using closed-form likelihood expansions, J. Econ., 195, 1, 51-70 (2016) · Zbl 1443.62361 · doi:10.1016/j.jeconom.2016.07.001
[20] Lyons, T.; Victoir, N., Cubature on Wiener Space, Proc. R. Soc. A, 460, 2041, 169-198 (2004) · Zbl 1055.60049 · doi:10.1098/rspa.2003.1239
[21] Müller, E. H., Scheichl, R., Shardlow, T.: Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation. Proc. R. Soc. A 471(2176) (2015) · Zbl 1372.65020
[22] Monoyios, M., Performance of utility-based strategies for hedging basis risk, Quant. Finance, 4, 245-255 (2004) · Zbl 1405.91563 · doi:10.1088/1469-7688/4/3/001
[23] Ninomiya, S.; Victoir, N., Weak approximation of stochastic differential equations and application to derivative pricing, Appl. Math. Finance, 15, 107-121 (2008) · Zbl 1134.91524 · doi:10.1080/13504860701413958
[24] Nualart, D., The Malliavin Calculus and Related Topics (2006), Berlin: Springer, Berlin · Zbl 1099.60003
[25] Takahashi, A.: Asymptotic expansion approach in finance. In: Friz, P., Gatheral, J., Gulisashvili, A., Jacquier, A., Teichmann, J. (eds.) Large Deviations and Asymptotic Methods in Finance. Springer Proceedings in Mathematics & Statistics. Switzerland (2015) · Zbl 1322.60003
[26] Takahashi, A.; Yamada, T., An asymptotic expansion with push-down of Malliavin weights, SIAM J. Financ. Math., 3, 95-136 (2012) · Zbl 1257.91052 · doi:10.1137/100807624
[27] Takahashi, A.; Yamada, T., A weak approximation with asymptotic expansion and multidimensional Malliavin weights, Ann. Appl. Probab., 26, 2, 818-856 (2016) · Zbl 1339.60099 · doi:10.1214/15-AAP1105
[28] Watanabe, S., Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Probab., 15, 1-39 (1987) · Zbl 0633.60077 · doi:10.1214/aop/1176992255
[29] Yamada, T., An arbitrary high order weak approximation of SDE and Malliavin Monte Carlo: analysis of probability distribution functions, SIAM J. Numer. Anal., 57, 2, 563-591 (2019) · Zbl 1418.60050 · doi:10.1137/17M114412X
[30] Yamada, T.; Yamamoto, K., Second order discretization of Bismut-Elworthy-Li formula: application to sensitivity analysis, SIAM/ASA J. Uncertain. Quantif., 7, 1, 143-173 (2019) · Zbl 1454.60073 · doi:10.1137/17M1142399
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.