×

On Heisenberg and local uncertainty principles for the multivariate continuous quaternion shearlet transform. (English) Zbl 1498.42009

Summary: In this paper, we generalize the continuous quaternion shearlet transform on \(\mathbb{R}^2\) to \(\mathbb{R}^{2d}\), called the multivariate two sided continuous quaternion shearlet transform. Using the two sided quaternion Fourier transform, we derive several important properties such as (reconstruction formula, plancherel’s formula, etc.). We present several example of the multivariate two sided continuous quaternion shearlet transform. We apply the multivariate two sided continuous quaternion shearlet transform properties and the two sided quaternion Fourier transform to establish the Heisenberg uncertainty principle. Last we study the multivariate two sided continuous quaternion shearlet transform on subset of finite measures.

MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
42C15 General harmonic expansions, frames
46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis
44A35 Convolution as an integral transform
11R52 Quaternion and other division algebras: arithmetic, zeta functions

References:

[1] Folland, GB; Sitaram, A., The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl., 3, 207-238 (1997) · Zbl 0885.42006 · doi:10.1007/BF02649110
[2] Havin, V.; Jöricke, B., The uncertainty principle in harmonic analysis (1994), Berlin: Springer Verlag, Berlin · Zbl 0827.42001 · doi:10.1007/978-3-642-78377-7
[3] Labate, D., Lim, W.Q., Kutyniok, G., Weiss, G.: Sparse multidimensional representation using shearlets. SPIE Proc. 5914, SPIE, Bellingham 254-262 (2005)
[4] Easley, G.; Labate, D.; Lim, W-Q, Sparse directional image representations using the discrete shearlet transform, Appl. Comput. c Anal., 25, 25-46 (2008) · Zbl 1147.68794 · doi:10.1016/j.acha.2007.09.003
[5] Guo, K.; Labate, D.; Lim, W-Q, Edge analysis and identification using the continuous shearlet transform, Appl. Comput. Harm. Anal., 27, 24-46 (2009) · Zbl 1169.42018 · doi:10.1016/j.acha.2008.10.004
[6] Ding, L.; Zhao, X., Shearlet-wavelet regularized semismooth Newton iteration for image restoration, Math. Probl. Eng., 647254, 12 (2015)
[7] Petersen, P., Shearlet approximation of functions with discontinuous derivatives, J. Approx. Theory, 207, 127-138 (2016) · Zbl 1342.42045 · doi:10.1016/j.jat.2016.02.004
[8] Grohs, P.; Kereta, Z.; Wiesmann, U., A shearlet-based fast thresholded Landweber algorithm for deconvolution, Int. J. Wavelets Multiresolution Inf. Process., 14, 5, 1650032 (2016) · Zbl 1345.62093 · doi:10.1142/S0219691316500326
[9] Bahri, M.; Ashino, R.; Vaillancourt, R., Two-dimensional quaternion wavelet transform, Appl. Math. Comput., 218, 10-21 (2011) · Zbl 1232.65192
[10] Bahri, M.; Ashino, R.; Vaillancourt, R., Continuous quaternion Fourier and wavelet transforms, Int. J. Wavelets Multiresolution Inf. Process., 12, 1460003 (2014) · Zbl 1301.42015 · doi:10.1142/S0219691314600030
[11] Brahim, K., Nefzi, B., Tefjeni, E.: Uncertainty principles for the continuous quaternion shearlet transform. Adv. Appl. Clifford Algebras, 29(3), 43 (2019) · Zbl 1431.42017
[12] Chen, LP; Kou, KI; Liu, MS, Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform, J. Math. Anal. Appl., 423, 1, 681-700 (2015) · Zbl 1425.42012 · doi:10.1016/j.jmaa.2014.10.003
[13] Lian, P., Uncertainty principle for the quaternion Fourier transform, J. Math. Anal. Appl., 467, 2, 1258-1269 (2018) · Zbl 1431.42020 · doi:10.1016/j.jmaa.2018.08.002
[14] Brahim, K.; Tefjeni, E., Uncertainty principle for the two sided quaternion windowed Fourier transform, J. Integral Transform. Spec. Funct., 30, 362-382 (2019) · Zbl 1444.42011 · doi:10.1080/10652469.2019.1572138
[15] Brahim, K., Tefjeni, E.: Uncertainty principle for the two sided quaternion windowed Fourier transform. J. Pseudo-Differ. Oper. Appl. 11, 159-185 (2020). doi:10.1007/s11868-019-00283-5 · Zbl 1442.42019
[16] Hitzer, E., Quaternion Fourier transform on quaternion fields and generalization, Adv. Appl. Clifford Algebr., 17, 3, 497-517 (2007) · Zbl 1143.42006 · doi:10.1007/s00006-007-0037-8
[17] Bahri, M., Ashino, R., Vaillancourt, R.: Convolution theorems for quaternion fourier transform: properties and applications. Abstr. Appl. Anal. 2013, 162769 (2013) · Zbl 1297.42015
[18] Laugesen, RSS; Weaver, N.; Weiss, GL; Wilson, EN, A characterization of the higher dimensional groups associated with continuous wavelets, J. Geom. Anal., 12, 1, 89-102 (2002) · Zbl 1043.42032 · doi:10.1007/BF02930862
[19] Dahlke, S.; Kutyniok, G.; Maass, P.; Sagiv, C.; Stark, H-G; Teschke, G., The uncertainty principle associated with the Continuous Shearlet Transform, Int. J. Wavelets Multiresolut. Inf. Process., 6, 157-181 (2008) · Zbl 1257.42047 · doi:10.1142/S021969130800229X
[20] Dahlke, S.; Steidl, G.; Teschke, G., The continuous shearlet transform in arbitrary space dimensions, J. Fourier Anal. Appl., 16, 340-364 (2010) · Zbl 1194.42038 · doi:10.1007/s00041-009-9107-8
[21] Guo, K.; Labate, D., Characterization and analysis of edges using the continuous shearlet transform, SIAM J. Imaging Sci., 2, 959-986 (2009) · Zbl 1175.42012 · doi:10.1137/080741537
[22] Guo, K.; Labate, D., Characterization of piecewise-smooth surfaces using the 3D continuous shearlet transform, J. Fourier Anal. Appl., 18, 488-516 (2012) · Zbl 1317.42027 · doi:10.1007/s00041-011-9209-y
[23] Guo, K., Labate, D.: Analysis and identification of multidimensional singularities using the continuous shearlet transform. In: Kutyniok, G., Labate, D. (eds.) Shearlets. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2012). doi:10.1007/978-0-8176-8316-0_3 · Zbl 1252.42040
[24] Kutyniok, G., Labate, D.: Introduction to shearlets. In: Kutynio, G. (ed.), Shearlets: Multiscale Analysis for Multivariate Data. Birkhauser, Boston, MA, pp. 1-38 (2012) · Zbl 1251.42010
[25] Kutyniok, G.; Labate, D., Resolution of the Wavefront Set using Continuous Shearlets, Trans. Amer. Math. Soc., 361, 2719-2754 (2009) · Zbl 1169.42012 · doi:10.1090/S0002-9947-08-04700-4
[26] Liu, S.; Hu, S.; Xiao, Y.; An, L., A Bayesian shearlet shrinkage for SAR image denoising via sparse representation, Multidim. Syst. Sign Process., 25, 683-701 (2014) · doi:10.1007/s11045-013-0225-8
[27] Nefzi, B., Brahim, K., Fitouhi, A.: Uncertianty principles for the multivariate continuous shearlet transform. J. Pseudo-Differ. Oper. Appl. 11, 517-542 (2020). doi:10.1007/s11868-019-00292-4 · Zbl 1440.42037
[28] Guo, K.; Kutyniok, G.; Labate, D.; Chen, G.; Lai, MJ, Sparse multidimensional representations using anisotropic dilation and shear operators, Wavelets and Splines, 189-201 (2005), GA: Athens, GA · Zbl 1099.65148
[29] Heisenberg, W., Uber den anschaulichen Inhalt der quantentheo-retischen Kinematik und Mechanik, Z. Physik, 43, 172-198 (1927) · JFM 53.0853.05 · doi:10.1007/BF01397280
[30] Kennard, EH, Z ur Quantenmechanik einfacher Bewegungstypen, Z. Phys., 44, 326-352 (1927) · JFM 53.0853.02 · doi:10.1007/BF01391200
[31] Weyl, H.: Gruppentheorie und Quantenmechanik, S. Hirzel, Leipzig. Revised English edition: Groups and Quantum Mechanics, Dover, (1950) · JFM 54.0954.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.