×

Resolution of the wavefront set using continuous shearlets. (English) Zbl 1169.42012

Authors’ abstract: It is known that the Continuous Wavelet Transform of a distribution \( f\) decays rapidly near the points where \( f\) is smooth, while it decays slowly near the irregular points. This property allows the identification of the singular support of \( f\). However, the Continuous Wavelet Transform is unable to describe the geometry of the set of singularities of \( f\) and, in particular, identify the wavefront set of a distribution. In this paper, we employ the same framework of affine systems which is at the core of the construction of the wavelet transform to introduce the Continuous Shearlet Transform. This is defined by \( \mathcal{SH}_\psi f(a,s,t) = \langle{f}{\psi_{ast}}\rangle\), where the analyzing elements \( \psi_{ast}\) are dilated and translated copies of a single generating function \( \psi\). The dilation matrices form a two-parameter matrix group consisting of products of parabolic scaling and shear matrices. We show that the elements \( \{\psi_{ast}\}\) form a system of smooth functions at continuous scales \( a>0\), locations \( t \in \mathbb{R}^2\), and oriented along lines of slope \( s \in \mathbb{R}\) in the frequency domain. We then prove that the Continuous Shearlet Transform does exactly resolve the wavefront set of a distribution \( f\).

MSC:

42C15 General harmonic expansions, frames
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems

References:

[1] J. Bros and D. Iagolnitzer, Support essentiel et structure analytique des distributions, Séminaire Goulaouic-Lions-Schwartz, exp. no. 19 (1975-1976). · Zbl 0333.46029
[2] A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113 – 190. · Zbl 0204.13703
[3] Emmanuel J. Candès and Laurent Demanet, The curvelet representation of wave propagators is optimally sparse, Comm. Pure Appl. Math. 58 (2005), no. 11, 1472 – 1528. · Zbl 1078.35007 · doi:10.1002/cpa.20078
[4] Emmanuel J. Candès and David L. Donoho, Ridgelets: a key to higher-dimensional intermittency?, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357 (1999), no. 1760, 2495 – 2509. · Zbl 1082.42503 · doi:10.1098/rsta.1999.0444
[5] Emmanuel J. Candès and David L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise \?² singularities, Comm. Pure Appl. Math. 57 (2004), no. 2, 219 – 266. · Zbl 1038.94502 · doi:10.1002/cpa.10116
[6] Emmanuel J. Candès and David L. Donoho, Continuous curvelet transform. I. Resolution of the wavefront set, Appl. Comput. Harmon. Anal. 19 (2005), no. 2, 162 – 197. , https://doi.org/10.1016/j.acha.2005.02.003 Emmanuel J. Candès and David L. Donoho, Continuous curvelet transform. II. Discretization and frames, Appl. Comput. Harmon. Anal. 19 (2005), no. 2, 198 – 222. · Zbl 1086.42023 · doi:10.1016/j.acha.2005.02.004
[7] Emmanuel J. Candès and David L. Donoho, Continuous curvelet transform. I. Resolution of the wavefront set, Appl. Comput. Harmon. Anal. 19 (2005), no. 2, 162 – 197. , https://doi.org/10.1016/j.acha.2005.02.003 Emmanuel J. Candès and David L. Donoho, Continuous curvelet transform. II. Discretization and frames, Appl. Comput. Harmon. Anal. 19 (2005), no. 2, 198 – 222. · Zbl 1086.42023 · doi:10.1016/j.acha.2005.02.004
[8] Peter G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), no. 2, 129 – 201. · Zbl 0966.42022
[9] Ole Christensen, An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003. · Zbl 1017.42022
[10] Antonio Córdoba and Charles Fefferman, Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), no. 11, 979 – 1005. · Zbl 0389.35046 · doi:10.1080/03605307808820083
[11] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, and G. Teschke, The uncertainty principle associated with the continuous shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), 157-181. · Zbl 1257.42047
[12] S. Dahlke, G. Kutyniok, G. Steidl and G. Teschke, Shearlet coorbit spaces and associated Banach frames, preprint (2007). · Zbl 1171.42019
[13] Glenn Easley, Demetrio Labate, and Wang-Q Lim, Sparse directional image representations using the discrete shearlet transform, Appl. Comput. Harmon. Anal. 25 (2008), no. 1, 25 – 46. · Zbl 1147.68794 · doi:10.1016/j.acha.2007.09.003
[14] A. Grossmann, J. Morlet, and T. Paul, Transforms associated to square integrable group representations. I. General results, J. Math. Phys. 26 (1985), no. 10, 2473 – 2479. · Zbl 0571.22021 · doi:10.1063/1.526761
[15] Kanghui Guo, Gitta Kutyniok, and Demetrio Labate, Sparse multidimensional representations using anisotropic dilation and shear operators, Wavelets and splines: Athens 2005, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2006, pp. 189 – 201. · Zbl 1099.65148
[16] Kanghui Guo and Demetrio Labate, Optimally sparse multidimensional representation using shearlets, SIAM J. Math. Anal. 39 (2007), no. 1, 298 – 318. · Zbl 1197.42017 · doi:10.1137/060649781
[17] Kanghui Guo, Demetrio Labate, Wang-Q Lim, Guido Weiss, and Edward Wilson, Wavelets with composite dilations, Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 78 – 87. · Zbl 1066.42023
[18] Kanghui Guo, Demetrio Labate, Wang-Q Lim, Guido Weiss, and Edward Wilson, Wavelets with composite dilations and their MRA properties, Appl. Comput. Harmon. Anal. 20 (2006), no. 2, 202 – 236. · Zbl 1086.42026 · doi:10.1016/j.acha.2005.07.002
[19] M. Holschneider, Wavelets, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. An analysis tool; Oxford Science Publications. · Zbl 0874.42020
[20] Lars Hörmander, The analysis of linear partial differential operators. I, Classics in Mathematics, Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis; Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]. · Zbl 0712.35001
[21] G. Kutyniok and T. Sauer, Adaptive directional subdivision schemes and shearlet multiresolution analysis, preprint, 2007. · Zbl 1193.42127
[22] D. Labate, W. Lim, G. Kutyniok, and G. Weiss, Sparse multidimensional representation using shearlets, Wavelets XI (San Diego, CA, 2005), 254-262, SPIE Proc. 5914, SPIE, Bellingham, WA, 2005.
[23] R. S. Laugesen, N. Weaver, G. L. Weiss, and E. N. Wilson, A characterization of the higher dimensional groups associated with continuous wavelets, J. Geom. Anal. 12 (2002), no. 1, 89 – 102. · Zbl 1043.42032 · doi:10.1007/BF02930862
[24] Stéphane Mallat, A wavelet tour of signal processing, Academic Press, Inc., San Diego, CA, 1998. · Zbl 0937.94001
[25] Yves Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. · Zbl 0776.42019
[26] Hart F. Smith, A Hardy space for Fourier integral operators, J. Geom. Anal. 8 (1998), no. 4, 629 – 653. · Zbl 1031.42020 · doi:10.1007/BF02921717
[27] Christopher D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993. · Zbl 0783.35001
[28] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. · Zbl 0821.42001
[29] G. Weiss and E. N. Wilson, The mathematical theory of wavelets, Twentieth century harmonic analysis — a celebration (Il Ciocco, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 33, Kluwer Acad. Publ., Dordrecht, 2001, pp. 329 – 366. · Zbl 1001.42020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.