×

Coevolutionary dynamics of host-pathogen interaction with density-dependent mortality. (English) Zbl 1497.92183

Summary: This study explores the coevolutionary dynamics of host-pathogen interaction based on a susceptible-infected population model with density-dependent mortality. We assume that both the host’s resistance and the pathogen’s virulence will adaptively evolve, but there are inevitable costs in terms of host birth rate and disease-related mortality rate. Particularly, it is assumed that both the host resistance and pathogen virulence can affect the transmission rate. By using the approach of adaptive dynamics and numerical simulation, we find that the finally coevolutionary outcome depends on the strength of host-pathogen asymmetric interaction, the curvature of trade-off functions, and the intensity of density-dependent natural mortality. To be specific, firstly, we find that if the strengths of host-pathogen asymmetric interaction and disease-related mortality are relatively weak, or the density-dependent natural mortality is relatively strong, then the host resistance and pathogen virulence will evolve to a continuously stable strategy. However, if the strength of host-pathogen asymmetric interaction and disease-related mortality becomes stronger, then the host resistance and pathogen virulence will evolve periodically. Secondly, we find that if the intensities of both the birth rate trade-off function and the density-dependent natural mortality are relatively weak, but the strength of host-pathogen asymmetric interaction becomes relatively strong, then the evolution of host resistance will have a relatively strongly accelerating benefit, the evolutionary branching of host resistance will first arise. However, if the strength of host-pathogen asymmetric interaction is relatively weak, but the intensity of the trade-off function of disease-related mortality becomes relatively strong, then the evolution of pathogen virulence will have a relatively strongly decelerating cost, and the evolutionary branching of pathogen virulence will first arise. Thirdly, after the evolutionary branching of host resistance and pathogen virulence, we further study the coevolutionary dynamics of two-hosts-one-pathogen interaction and one-host-two-pathogens interaction. We find that if the evolutionary branching of host resistance arises firstly, then the finally evolutionary outcome contains a dimorphic host and a monomorphic pathogen population. If the evolutionary branching of pathogen virulence arises firstly, then the finally evolutionary outcome may contain a monomorphic host and a dimorphic pathogen population.

MSC:

92D15 Problems related to evolution
92D25 Population dynamics (general)
92D30 Epidemiology
Full Text: DOI

References:

[1] Alizon, S.; Hurford, A.; Mideo, N.; Van Baalen, M., Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future, J Evol Biol, 22, 245-259 (2009) · doi:10.1111/j.1420-9101.2008.01658.x
[2] Alizon, S., Treating symptomatic infections and the co-evolution of virulence and drug resistance, Peer Commun J, 1 (2021) · doi:10.24072/pcjournal.38
[3] Anderson, RM; May, RM, Coevolution of hosts and parasites, Parasitology, 85, 411-426 (1982) · doi:10.1017/S0031182000055360
[4] Andreasen, V.; Pugliese, A., Pathogen coexistence induced by density-dependent host mortality, J Theor Biol, 177, 159-165 (1995) · doi:10.1016/S0022-5193(19)30172-9
[5] Antonovics, J.; Thrall, PH, The cost of resistance and the maintenance of genetic polymorphism in host-pathogen systems, Proc R Soc B, 257, 105-110 (1994) · doi:10.1098/rspb.1994.0101
[6] Ashby, B.; Iritani, R.; Best, A.; White, A.; Boots, M., Understanding the role of eco-evolutionary feedbacks in host-parasite coevolution, J Theor Biol, 464, 115-125 (2019) · Zbl 1460.92229 · doi:10.1016/j.jtbi.2018.12.031
[7] Baalen, MV, Coevolution of recovery ability and virulence, Proc R Soc B, 265, 317-325 (1998) · doi:10.1098/rspb.1998.0298
[8] Best, A.; White, A.; Boots, M., The implications of coevolutionary dynamics to host-parasite interactions, Am Nat, 173, 779-791 (2009) · doi:10.1086/598494
[9] Best, A.; White, A.; Boots, M., Resistance is futile but tolerance can explain why parasites do not always castrate their hosts, Evolution, 64, 348-357 (2010) · doi:10.1111/j.1558-5646.2009.00819.x
[10] Best, A.; Webb, S.; White, A.; Boots, M., Host resistance and coevolution in spatially structured populations, Proc R Soc B, 278, 2216-2222 (2011) · doi:10.1098/rspb.2010.1978
[11] Best, A.; Bowers, R.; White, A., Evolution, the loss of diversity and the role of trade-offs, Math Biosci, 264, 86-93 (2015) · Zbl 1371.92095 · doi:10.1016/j.mbs.2015.03.011
[12] Best, A., Host-pathogen coevolution in the presence of predators: fluctuating selection and ecological feedbacks, Proc R Soc B, 285, 20180928 (2018) · doi:10.1098/rspb.2018.0928
[13] Boldin, B.; Diekmann, O., Superinfections can induce evolutionarily stable coexistence of pathogens, J Math Biol, 56, 635-672 (2008) · Zbl 1141.92028 · doi:10.1007/s00285-007-0135-1
[14] Bonds, MH, Host life-history strategy explains pathogen-induced sterility, Am Nat, 168, 281-293 (2006) · doi:10.1086/506922
[15] Boots, M.; Begon, M., Trade-offs with resistance to a granulosis virus in the Indian meal moth, examined by a laboratory evolution experiment, Funct Ecol, 7, 528-534 (1993) · doi:10.2307/2390128
[16] Boots, M.; Bowers, RG, Three mechanisms of host resistance to microparasites-avoidance, recovery and tolerance-show different evolutionary dynamics, J Theor Biol, 201, 13-23 (1999) · doi:10.1006/jtbi.1999.1009
[17] Boots, M.; Haraguchi, Y., The evolution of costly resistance in host-parasite systems, Am Nat, 153, 359-370 (1999) · doi:10.1086/303181
[18] Boots, M.; Bowers, RG, The evolution of resistance through costly acquired immunity, Proc R Soc B, 271, 715-723 (2004) · doi:10.1098/rspb.2003.2655
[19] Boots, M.; Best, A.; Miller, MR; White, A., The role of ecological feedbacks in the evolution of host defence: what does theory tell us?, Phil Trans R Soc B, 364, 27-36 (2009) · doi:10.1098/rstb.2008.0160
[20] Boots, M.; White, A.; Best, A.; Bowers, R., How specificity and epidemiology drive the coevolution of static trait diversity in hosts and parasites, Evolution, 68, 1594-1606 (2014) · doi:10.1111/evo.12393
[21] Bowers, RG; Boots, M.; Begon, M., Life-history trade-offs and the evolution of pathogen resistance: competition between host strains, Proc R Soc B, 257, 247-253 (1994) · doi:10.1098/rspb.1994.0122
[22] Bowers, RG; Hoyle, A.; White, A.; Boots, M., The geometric theory of adaptive evolution: trade-off and invasion plots, J Theor Biol, 233, 363-377 (2005) · Zbl 1443.92125 · doi:10.1016/j.jtbi.2004.10.017
[23] Buckingham, LJ; Ashby, B., Coevolutionary theory of hosts and parasites, J Evol Biol, 35, 205-224 (2022) · doi:10.1111/jeb.13981
[24] Cantrell, RS; Cosner, C.; Lam, KY, Resident-invader dynamics in infinite dimensional systems, J Differ Equ, 263, 4565-4616 (2017) · Zbl 1388.35119 · doi:10.1016/j.jde.2017.05.029
[25] Day, T.; Proulx, SR, A general theory for the evolutionary dynamics of virulence, Am Nat, 163, E40-E63 (2004) · doi:10.1086/382548
[26] Dercole, F.; Rinaldi, S., Analysis of evolutionary processes: the adaptive dynamics approach and its applications (2008), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1305.92001
[27] Dieckmann, U.; Law, R., The dynamical theory of coevolution: a derivation from stochastic ecological processes, J Math Biol, 34, 579-612 (1996) · Zbl 0845.92013 · doi:10.1007/BF02409751
[28] Dieckmann, U.; Doebeli, M., On the origin of species by sympatric speciation, Nature, 400, 354-357 (1999) · doi:10.1038/22521
[29] Diekmann, O.; Jabin, PE; Mischler, S.; Perthame, B., The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach, Theor Popul Biol, 67, 257-271 (2005) · Zbl 1072.92035 · doi:10.1016/j.tpb.2004.12.003
[30] Doebeli, M.; Dieckmann, U., Evolutionary branching and sympatric speciation caused by different types of ecological interactions, Am Nat, 156, S77-S101 (2000) · doi:10.1086/303417
[31] Duffy, MA; Sivars-Becker, L., Rapid evolution and ecological host-parasite dynamics, Ecol Lett, 10, 44-53 (2007) · doi:10.1111/j.1461-0248.2006.00995.x
[32] Gascuel, F.; Choisy, M.; Duplantier, JM; Débarre, F.; Brouat, C., Host resistance, population structure and the long-term persistence of bubonic plague: contributions of a modelling approach in the Malagasy focus, PLoS Comput Biol, 9 (2013) · doi:10.1371/journal.pcbi.1003039
[33] Geritz, SAH; Mesze, G.; Metz, JAJ, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol Ecol, 12, 35-57 (1998) · doi:10.1023/A:1006554906681
[34] Geritz, SAH; Gyllenberg, M.; Jacobs, FJA; Parvinen, K., Invasion dynamics and attractor inheritance, J Math Biol, 44, 548-560 (2002) · Zbl 0990.92029 · doi:10.1007/s002850100136
[35] Geritz, SAH, Resident-invader dynamics and the coexistence of similar strategies, J Math Biol, 50, 67-82 (2005) · Zbl 1055.92042 · doi:10.1007/s00285-004-0280-8
[36] Geritz, SAH; Kisdi, É.; Yan, P., Evolutionary branching and long-term coexistence of cycling predators: critical function analysis, Theor Popul Biol, 71, 424-435 (2007) · Zbl 1122.92053 · doi:10.1016/j.tpb.2007.03.006
[37] Hesse, E.; Best, A.; Boots, M.; Hall, AR; Buckling, A., Spatial heterogeneity lowers rather than increases host-parasite specialization, J Evol Biol, 28, 1682-1690 (2015) · doi:10.1111/jeb.12689
[38] Hoyle, A.; Bowers, RG; White, A.; Boots, M., The influence of trade-off shape on evolutionary behaviour in classical ecological scenarios, J Theor Biol, 250, 498-511 (2008) · Zbl 1397.92498 · doi:10.1016/j.jtbi.2007.10.009
[39] Kada, S.; Lion, S., Superinfection and the coevolution of parasite virulence and host recovery, J Evol Biol, 28, 2285-2299 (2015) · doi:10.1111/jeb.12753
[40] Kisdi, É., Evolutionary branching under asymmetric competition, J Theor Biol, 197, 149-162 (1999) · doi:10.1006/jtbi.1998.0864
[41] Kisdi, É.; Geritz, SAH, Adaptive dynamics of saturated polymorphisms, J Math Biol, 72, 1039-1079 (2016) · Zbl 1352.92104 · doi:10.1007/s00285-015-0948-2
[42] Kisdi, É., TPB and the invasion of adaptive dynamics, Theor Popul Biol, 133, 52-55 (2020) · Zbl 1516.92054 · doi:10.1016/j.tpb.2019.12.003
[43] Kraaijeveld, AR; Limentani, EC; Godfray, HCJ, Basis of the trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster, Proc R Soc B, 268, 259-261 (2001) · doi:10.1098/rspb.2000.1354
[44] Kraaijeveld, AR; Layen, SJ; Futerman, PH; Godfray, HCJ, Lack of phenotypic and evolutionary cross-resistance against parasitoids and pathogens in Drosophila melanogaster, PLoS ONE, 7 (2012) · doi:10.1371/journal.pone.0053002
[45] Landi, P.; Dercole, F.; Rinaldi, S., Branching scenarios in eco-evolutionary prey-predator models, SIAM J Appl Math, 73, 1634-1658 (2013) · Zbl 1303.92083 · doi:10.1137/12088673X
[46] Lenski, RE, Experimental studies of pleiotropy and epistasis in Escherichia coli. II. Compensation for maladaptive effects associated with resistance to virus T4, Evolution, 42, 433-440 (1988)
[47] Lopez Pascua, L.; Hall, AR; Best, A.; Morgan, AD; Boots, M.; Buckling, A., Higher resources decrease fluctuating selection during host-parasite coevolution, Ecol Lett, 17, 1380-1388 (2014) · doi:10.1111/ele.12337
[48] May, RM; Anderson, RM, Epidemiology and genetics in the coevolution of parasites and hosts, Proc R Soc B, 219, 281-313 (1983) · Zbl 0529.92014
[49] McLeod, DV; Day, T., Pathogen evolution under host avoidance plasticity, Proc R Soc B, 282, 20151656 (2015) · doi:10.1098/rspb.2015.1656
[50] Mealor, MA; Boots, M., An indirect approach to imply trade-off shapes: population level patterns in resistance suggest a decreasingly costly resistance mechanism in a model insect system, J Evol Biol, 19, 326-330 (2006) · doi:10.1111/j.1420-9101.2005.01031.x
[51] Mena-Lorca J, Velasco-Hernandez JX (1995) Superinfection, virulence and density-dependent mortality in an epidemic model. Technical Report BU 1299-M. Cornell University, Biometrics Unit · Zbl 0937.92028
[52] Meszéna, G.; Gyllenberg, M.; Jacobs, FJ; Metz, JAJ, Link between population dynamics and dynamics of Darwinian evolution, Phys Rev Lett, 95 (2005) · doi:10.1103/PhysRevLett.95.078105
[53] Metz, JAJ; Nisbet, RM; Geritz, SAH, How should we define fitness for general ecological scenarios?, Trends Ecol Evol, 7, 198-202 (1992) · doi:10.1016/0169-5347(92)90073-K
[54] Pugliese, A., On the evolutionary coexistence of parasite strains, Math Biosci, 177, 355-375 (2002) · Zbl 0995.92036 · doi:10.1016/S0025-5564(02)00083-4
[55] Restif, O.; Koella, JC, Shared control of epidemiological traits in a coevolutionary model of host-parasite interactions, Am Nat, 161, 827-836 (2003) · doi:10.1086/375171
[56] Rozins, C.; Day, T., The industrialization of farming may be driving virulence evolution, Evol Appl, 10, 189-198 (2017) · doi:10.1111/eva.12442
[57] Simms, EL; Fritz, RS; Simms, EL, Costs of plant resistance to herbivory, Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics, 392-425 (1992), Chicago: The University of Chicago Press, Chicago
[58] Svennungsen, TO; Kisdi, É., Evolutionary branching of virulence in a single-infection model, J Theor Biol, 257, 408-418 (2009) · Zbl 1400.92541 · doi:10.1016/j.jtbi.2008.11.014
[59] Tibayrenc, M., Genetics and evolution of infectious diseases (2011), London, UK: Elsevier, London, UK
[60] Tompkins, DM; Dobson, AP; Arneberg, P., The Ecology of Wildlife Diseases (2002), Oxford: Oxford University Press, Oxford
[61] Zu, J.; Wang, JL; Du, JQ, Adaptive evolution of defense ability leads to diversification of prey species, Acta Biotheor, 62, 207-234 (2014) · doi:10.1007/s10441-014-9218-8
[62] Zu, J.; Yuan, B.; Du, JQ, Top predators induce the evolutionary diversification of intermediate predator species, J Theor Biol, 387, 1-12 (2015) · Zbl 1343.92451 · doi:10.1016/j.jtbi.2015.09.024
[63] Zu, J.; Wang, JL; Huang, G., Evolutionary diversification of prey and predator species facilitated by asymmetric interactions, PloS ONE, 11 (2016) · doi:10.1371/journal.pone.0163753
[64] Zu, J.; Li, ML; Gu, YX; Fu, ST, Modelling the evolutionary dynamics of host resistance-related traits in a susceptible-infected community with density-dependent mortality, Discrete Contin Dyn Syst Ser-B, 25, 3049-3086 (2020) · Zbl 1444.92073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.