×

Superinfections can induce evolutionarily stable coexistence of pathogens. (English) Zbl 1141.92028

Summary: Parasites reproduce and are subject to natural selection at several different, but intertwined, levels. M. A. Gilchrist and D. Coombs [Theor. Popul. Biol. 69, No. 2, 145–153 (2006; Zbl 1089.92044)] relate the between-host transmission in the context of an SI model to the dynamics within a host. They demonstrate that within-host selection may lead to an outcome that differs from the outcome of selection at the host population level. We combine the two levels of reproduction by considering the possibility of superinfection and study the evolution of the pathogen’s within-host reproduction rate \(p\). We introduce a superinfection function \(\phi = \phi (p,q)\), giving the probability with which pathogens with trait \(q\), upon transmission to a host that is already infected by pathogens with trait \(p\), “take over” the host.
We consider three cases according to whether the function \(q \rightarrow \phi (p,q)\) (i) has a discontinuity, (ii) is continuous, but not differentiable, or (iii) is differentiable in \(q = p\). We find that in case (i) the within-host selection dominates in the sense that the outcome of evolution at the host population level coincides with the outcome of evolution in a single infected host. In case (iii), it is the transmission to susceptible hosts that dominates the evolution to the extent that the singular strategies are the same as when the possibility of superinfections is ignored. In the biologically most relevant case (ii), both forms of reproduction contribute to the value of a singular trait. We show that when \(\phi \) is derived from a branching process variant of the submodel for the within-host interaction of pathogens and target cells, the superinfection functions fall under case (ii). We furthermore demonstrate that the superinfection model allows for steady coexistence of pathogen traits at the host population level, both on the ecological, as well as on the evolutionary time scale.

MSC:

92D15 Problems related to evolution
92D30 Epidemiology
37N25 Dynamical systems in biology
91A99 Game theory
92D25 Population dynamics (general)

Citations:

Zbl 1089.92044
Full Text: DOI

References:

[1] Alizon, S.: Parasite virulence evolution: insights from embedded models. PhD thesis, University of Paris, France (2006)
[2] Alizon S. and Baalen M. (2005). Emergence of a convex trade-off between transmission and virulence. Am. Nat. 165: 155–167 · doi:10.1086/430053
[3] Anderson R.M. and May R.M. (1982). Coevolution of hosts and parasites. Parasitology 85: 411–426 · doi:10.1017/S0031182000055360
[4] Anderson R.M. and May R.M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford
[5] Antia R., Levin B.R. and May R.M. (1994). Within-host population dynamics and the evolution and maintenance of macroparasite virulence. Am. Nat. 144: 457–472 · doi:10.1086/285686
[6] Day T. and Proulx S.R. (2004). A general theory for the evolutionary dynamics of virulence. Am. Nat. 163: 40–63 · doi:10.1086/382548
[7] De Leenheer P. and Smith H.L. (2003). Virus dynamics: a global analysis. SIAM J. Appl. Math. 63(4): 1313–1327 · Zbl 1035.34045 · doi:10.1137/S0036139902406905
[8] Dieckmann U. and Metz J.A.J. (2006). Surprising evolutionary predictions from enhanced ecological realism. Theor. Popul. Biol. 69(3): 263–281 · Zbl 1117.92044 · doi:10.1016/j.tpb.2005.12.001
[9] Dieckmann, U., Metz, J.A.J., Sabelis, M.W., Sigmund, K.: Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management. Cambridge Studies in Adaptive Dynamics, Cambridge University Press, Cambridge (2002) · Zbl 1228.92050
[10] Diekmann, O.: A beginner’s guide to adaptive dynamics. In: Mathematical Modelling of Population Dynamics of Banach Center Publ., vol. 63, pp. 47–86. Polish Acad. Sci., Warsaw (2004) · Zbl 1051.92032
[11] Diekmann O., Gyllenberg M. and Metz J.A.J. (2003). Steady-state analysis of structured population models. Theor. Popul. Biol. 63(4): 309–338 · Zbl 1098.92062 · doi:10.1016/S0040-5809(02)00058-8
[12] Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley Series in Mathematical and Computational Biology. Wiley, Chichester (2000) · Zbl 0997.92505
[13] Ewald P.W. (1983). Host–parasite relations, vectors and the evolution of disease severity. Ann. Rev. Ecol. Syst. 14: 465–485 · doi:10.1146/annurev.es.14.110183.002341
[14] Ewald P.W. (1994). Evolution of Infectious Disease. Oxford University Press, Oxford
[15] Ganusov V.V. and Antia R. (2003). Trade-offs and the evolution of virulence of microparasites: do details matter? Theor. Popul. Biol. 64(2): 211–220 · Zbl 1104.92041 · doi:10.1016/S0040-5809(03)00063-7
[16] Geritz S.A.H. (2005). Resident-invader dynamics and the coexistence of similar strategies. J. Math. Biol. 50(1): 67–82 · Zbl 1055.92042 · doi:10.1007/s00285-004-0280-8
[17] Geritz S.A.H., Gyllenberg M., Jacobs F.J.A. and Parvinen K. (2002). Invasion dynamics and attractor inheritance. J. Math. Biol. 44: 548–560 · Zbl 0990.92029 · doi:10.1007/s002850100136
[18] Geritz S.A.H., Kisdi E., Meszena G. and Metz J.A.J. (1998). Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12: 35–57 · doi:10.1023/A:1006554906681
[19] Gilchrist M.A. and Coombs D. (2006). Evolution of virulence: interdependence, constraints and selection using nested models. Theor. Popul. Biol. 69: 145–153 · Zbl 1089.92044 · doi:10.1016/j.tpb.2005.07.002
[20] Gomes, G.M., Medley, G.F.: Dynamics of multiple strains of infectious agents coupled by cross-immunity: a comparison of models. In: Castillo-Chavez, C., et al. (eds.) Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory. Proceedings of a Workshop, Integral part of the IMA Program on Mathematics in Biology. IMA Vol. Math. Appl. 126, pp. 171–191. Springer, New York (2002) · Zbl 1023.92025
[21] Grenfell B.T., Pybus O.G., Gog J.R., Wood J.L.N., Daly J.M., Mumford J.A. and Holmes E.C. (2004). Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303: 327–332 · doi:10.1126/science.1090727
[22] Haccou, P., Jagers, P., Vatutin, V.A.: Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge Studies in Adaptive Dynamics. Cambridge University Press, Cambridge (2005) · Zbl 1118.92001
[23] Hochberg M.E. and Holt R.D. (1990). The coexistence of competing parasites. I. The role of cross-species infection. Am. Nat. 136: 517–541 · doi:10.1086/285111
[24] Klinkenberg D. and Heesterbeek J.A.P. (2005). A simple model for the within-host dynamics of a protozoan parasite. Proc. Roy. Soc. B 272: 593–600 · doi:10.1098/rspb.2004.2987
[25] Lenski R.E. and May R.M. (1994). The evolution of virulence in parasites and pathogens: reconciliation between the competing hypotheses. J. Theor. Biol. 169: 253–265 · doi:10.1006/jtbi.1994.1146
[26] Levin, S.A.: Coevolution. In: Freedman H., Strobeck C. (eds.) Population Biology. Lecture notes in Biomathematics 52, pp. 328–334 (1983)
[27] Levin, S.A.: Some approaches to the modelling of coevolutionary interactions. In: Nitecki M. (ed.) Coevolution, pp. 21–65 (1983)
[28] Levin S.A. and Pimentel D. (1981). Selection of intermediate rates of increase in parasite-host systems. Am. Nat. 117: 308–315 · doi:10.1086/283708
[29] Matessi C. and Di Pasquale C. (1996). Long-term evolution of multilocus traits. J. Math. Biol. 34: 613–653 · Zbl 0851.92009 · doi:10.1007/BF02409752
[30] May R.M. and Anderson R.M. (1983). Epidemiology and genetics in the coevolution of parasites and hosts. Proc. Roy. Soc. Lond. B 219: 281–313 · Zbl 0529.92014 · doi:10.1098/rspb.1983.0075
[31] Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs, F.J.A., van Heerwaarden, J.S.: Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: van Strien, S.J., et al. (eds.) Stochastic and spatial structures of dynamical systems. Proceedings of the Meeting, Amsterdam, Netherlands, January 1995. Verh. Afd. Natuurkd., Amsterdam, 1. Reeks, K. Ned. Akad. Wet. 45, pp. 183–231 (1996) · Zbl 0972.92024
[32] Metz, J.A.J., Mylius, S.D., Diekmann, O.: When does evolution optimise? On the relation between types of density dependence and evolutionarily stable life histories. IIASA working paper WP-96-04, (1996). http://www.iiasa.ac.at/cgi-bin/pubsrch?WP96004
[33] Meyers L.A., Levin B.R., Richardson A.R. and Stojiljkovic I. (2003). Epidemiology, hypermutation, within-host evolution and the virulence of neisseria meningitidis. Proc. Roy. Soc. Lond. B 270: 1667–1677 · doi:10.1098/rspb.2003.2416
[34] Mosquera J. and Adler F.R. (1998). Evolution of virulence: a unified framework for coinfection and superinfection. J. Theor. Biol. 195: 293–313 · doi:10.1006/jtbi.1998.0793
[35] Murase A., Sasaki T. and Kajiwara T. (2005). Stability analysis of pathogen-immune interaction dynamics. J. Math. Biol. 51(3): 247–267 · Zbl 1086.92029 · doi:10.1007/s00285-005-0321-y
[36] Mylius S.D. and Diekmann O. (1995). On evolutionarily stable life histories, optimization and the need to be specific about density dependence. Oikos 74: 218–224 · doi:10.2307/3545651
[37] Nowak M.A. and May R.M. (1994). Superinfection and the evolution of parasite virulence. Proc. Roy. Soc. Lond. B 255: 81–89 · doi:10.1098/rspb.1994.0012
[38] Nowak M.A. and May R.M. (2000). Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford · Zbl 1101.92028
[39] Perelson A.S., Kirschner D.E. and Boer R. (1993). Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114(1): 81–125 · Zbl 0796.92016 · doi:10.1016/0025-5564(93)90043-A
[40] Pugliese, A.: Evolutionary dynamics of virulence. Available online at: http://www.science.unitn.it/pugliese/
[41] Pugliese A. (2002). On the evolutionary coexistence of parasite strains. Math. Biosci. 177/178: 355–375 · Zbl 0995.92036 · doi:10.1016/S0025-5564(02)00083-4
[42] Saldaña J., Elena S.F. and Solé R.V. (2003). Coinfection and superinfection in RNA virus population: a selection-mutation model. Math. Biosci. 183: 135–160 · Zbl 1012.92031 · doi:10.1016/S0025-5564(03)00038-5
[43] Smith V.H. and Holt R.D. (1996). Resource competition and within-host disease dynamics. Tree 11: 386–389
[44] Thieme, H.R.: Pathogen competition and coexistence and the evolution of virulence. In: Mathematics for Life Sciences and Medicine. Springer, Heidelberg (2007, in press)
[45] van Baalen M. and Sabelis M.W. (1995). The milker-killer dilemma and spatially structured predator-prey interactions. Oikos 74: 391–400 · doi:10.2307/3545984
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.