×

Periodic oscillations in leukopoiesis models with two delays. (English) Zbl 1447.92038

Summary: The term leukopoiesis describes processes leading to the production and regulation of white blood cells. It is based on stem cells differentiation and may exhibit abnormalities resulting in severe diseases, such as cyclical neutropenia and leukemias. We consider a nonlinear system of two equations, describing the evolution of a stem cell population and the resulting white blood cell population. Two delays appear in this model to describe the cell cycle duration of the stem cell population and the time required to produce white blood cells. We establish sufficient conditions for the asymptotic stability of the unique nontrivial positive steady state of the model by analysing roots of a second degree exponential polynomial characteristic equation with delay-dependent coefficients. We also prove the existence of a Hopf bifurcation which leads to periodic solutions. Numerical simulations of the model with parameter values reported in the literature demonstrate that periodic oscillations (with short and long periods) agree with observations of cyclical neutropenia in patients.

MSC:

92C15 Developmental biology, pattern formation
92C37 Cell biology
92D25 Population dynamics (general)
34K20 Stability theory of functional-differential equations

References:

[1] Adimy, M.; Crauste, F., Global stability of a partial differential equation with distributed delay due to cellular replication, Nonlinear Anal., 54, 8, 1469-1491 (2003) · Zbl 1028.35149
[2] Adimy, M.; Crauste, F., Existence, positivity and stability for a nonlinear model of cellular proliferation, Nonlinear Anal.: Real World Appl., 6, 2, 337-366 (2005) · Zbl 1073.35055
[3] Adimy, M.; Pujo-Menjouet, L., Asymptotic behaviour of a singular transport equation modelling cell division, Discrete Cont. Dyn. Syst. Ser. B, 3, 439-456 (2003) · Zbl 1120.35305
[4] Adimy, M.; Crauste, F.; Pujo-Menjouet, L., On the stability of a maturity structured model of cellular proliferation, Discrete Cont. Dyn. Syst. Ser. A, 12, 3, 501-522 (2005) · Zbl 1064.35023
[5] Adimy, M.; Crauste, F.; Ruan, S., A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia, SIAM J. Appl. Math., 65, 4, 1328-1352 (2005) · Zbl 1090.34058
[6] Adimy, M.; Crauste, F.; Ruan, S., Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics, Nonlinear Anal. Real World Appl., 6, 4, 651-670 (2005) · Zbl 1074.92010
[7] Adimy, M.; Crauste, F.; Halanay, A.; Neamţu, M.; Opriş, D., Stability of limit cycles in a pluripotent stem cell dynamics model, Chaos, Solitons Fractals, 27, 4, 1091-1107 (2006) · Zbl 1079.92022
[8] Beretta, E.; Kuang, Y., Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33, 1144-1165 (2002) · Zbl 1013.92034
[9] Bernard, S.; Bélair, J.; Mackey, M. C., Oscillations in cyclical neutropenia: new evidence based on mathematical modeling, J. Theor. Biol., 223, 283-298 (2003) · Zbl 1464.92062
[10] Bernard, S.; Bélair, J.; Mackey, M. C., Bifurcations in a white-blood-cell production model, C. R. Biol., 327, 201-210 (2004)
[11] Boese, F. G., Stability criteria for second-order dynamical systems involving several time delays, SIAM J. Math. Anal., 26, 1306-1330 (1995) · Zbl 0844.34074
[12] Burns, F. J.; Tannock, I. F., On the existence of a \(G_0\) phase in the cell cycle, Cell Tissue Kinet., 19, 321-334 (1970)
[13] Colijn, C.; Mackey, M. C., A mathematical model of hematopoiesis—I. Periodic chronic myelogenous leukemia, J. Theor. Biol., 237, 117-132 (2005) · Zbl 1440.92024
[14] Colijn, C.; Mackey, M. C., A mathematical model of hematopoiesis—II. Cyclical neutropenia, J. Theor. Biol., 237, 133-146 (2005) · Zbl 1440.92025
[15] Dyson, J.; Villella-Bressan, R.; Webb, G. F., A singular transport equation modelling a proliferating maturity structured cell population, Can. Appl. Math. Q., 4, 65-95 (1996) · Zbl 0855.92019
[16] Dyson, J.; Villella-Bressan, R.; Webb, G. F., An age and maturity structured model of cell population dynamics, (Horn, M.; Simonnett, G.; Webb, G. F., Mathematical Models in Medical and Health Science (1998), Vanderbilt University Press: Vanderbilt University Press Nashville, TN), 66-116 · Zbl 0959.92011
[17] Dyson, J.; Villella-Bressan, R.; Webb, G. F., A nonlinear age and maturity structured model of population dynamics, I: basic theory, J. Math. Anal. Appl., 242, 1, 93-104 (2000) · Zbl 0978.92019
[18] Dyson, J.; Villella-Bressan, R.; Webb, G. F., A nonlinear age and maturity structured model of population dynamics, II: chaos, J. Math. Anal. Appl., 242, 2, 255-270 (2000) · Zbl 0978.92020
[19] Fortin, P.; Mackey, M. C., Periodic chronic myelogenous leukemia: spectral analysis of blood cell counts and etiological implications, Br. J. Haematol., 104, 336-345 (1999)
[20] Hale, J.; Verduyn Lunel, S. M., Introduction to functional differential equations. Applied Mathematical Sciences, vol. 99 (1993), Springer: Springer New York · Zbl 0787.34002
[21] Haurie, C.; Dale, D. C.; Mackey, M. C., Cyclical neutropenia and other periodic hematological diseases: a review of mechanisms and mathematical models, Blood, 92, 2629-2640 (1998)
[22] Haurie, C.; Dale, D. C.; Mackey, M. C., Occurrence of periodic oscillations in the differential blood counts of congenital, idiopathic and cyclical neutropenic patients before and during treatment with G-CSF, Exp. Hematol., 27, 401-409 (1999)
[23] Hearn, T.; Haurie, C.; Mackey, M. C., Cyclical neutropenia and the peripheral control of white blood cell production, J. Theor. Biol., 192, 167-181 (1998)
[24] Lajtha, L. G., On DNA labeling in the study of the dynamics of bone marrow cell populations, (Stohlman, F., The Kinetics of Cellular Proliferation (1959), Grune and Stratton: Grune and Stratton New York), 173-182
[25] MacDonald, N., Cyclical neutropenia: models with two cell types and two time lags, (Valleron, A.; Macdonald, P., Biomathematics and Cell Kinetics (1978), North-Holland: North-Holland Amsterdam), 287-295
[26] Mackey, M. C., Unified hypothesis of the origin of aplastic anaemia and periodic hematopoı¨esis, Blood, 51, 94-1956 (1978)
[27] Mackey, M. C., Cell kinetic status of haematopoietic stem cells, Cell Prolif., 34, 71-83 (2001)
[28] Mackey, M. C.; Rey, A., Multistability and boundary layer development in a transport equation with retarded arguments, Can. Appl. Math. Q., 1, 1-21 (1993)
[29] Mackey, M. C.; Rey, A., Propagation of population pulses and fronts in a cell replication problem: non-locality and dependence on the initial function, Physica D, 86, 373-395 (1995) · Zbl 0887.92025
[30] Mackey, M. C.; Rey, A., Transitions and kinematics of reaction-convection fronts in a cell population model, Physica D, 80, 120-139 (1995) · Zbl 0885.92030
[31] Mackey, M. C.; Rudnicki, R., Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol., 33, 89-109 (1994) · Zbl 0833.92014
[32] Mackey, M. C.; Rudnicki, R., A new criterion for the global stability of simultaneous cell replication and maturation processes, J. Math. Biol., 38, 195-219 (1999) · Zbl 0980.92008
[33] Michor, F.; Hughes, T. P.; Iwasa, Y.; Branford, S.; Shah, N. P.; Sawyers, C. L.; Nowak, M. A., Dynamics of chronic myeloid leukemia, Nature, 435, 1267-1270 (2005)
[34] Novak, J. P.; Nec˘as, E., Proliferation differentiation pathways of murine haematopoiesis: correlation of lineage fluxes, Cell Prolif., 27, 597-633 (1994)
[35] Pujo-Menjouet, L.; Mackey, M. C., Contribution to the study of periodic chronic myelogenous leukemia, C. R. Biol., 327, 235-244 (2004)
[36] Pujo-Menjouet, L.; Rudnicki, R., Global stability of cellular populations with unequal division, Can. Appl. Math. Q., 8, 2, 185-202 (2000) · Zbl 1496.35162
[37] Pujo-Menjouet, L.; Bernard, S.; Mackey, M. C., Long period oscillations in a \(G_0\) model of hematopoietic stem cells, SIAM J. Appl. Dyn. Syst., 4, 2, 312-332 (2005) · Zbl 1110.34050
[38] Ruan, S.; Wei, J., Periodic solutions of planar systems with two delays, Proc. R. Soc. Edinburgh Ser. A, 129, 1017-1032 (1999) · Zbl 0946.34062
[39] Ruan, S.; Wei, J., On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10, 863-874 (2003) · Zbl 1068.34072
[40] Shampine, L. F.; Thompson, S., Solving DDEs in MATLAB, Appl. Numer. Math., 37, 441-458 (2001), \( \langle\) http://www.radford.edu/thompson/webddes/\( \rangle \) · Zbl 0983.65079
[41] Wei, J.; Ruan, S., Stability and bifurcation in a neural network model with two delays, Physica D, 130, 255-272 (1999) · Zbl 1066.34511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.