×

Numerical solution of in-viscid Burger equation in the application of physical phenomena: the comparison between three numerical methods. (English) Zbl 1497.65148

Summary: In this paper, upwind approach, Lax-Friedrichs, and Lax-Wendroff schemes are applied for working solution of In-thick Burger equation in the application of physical phenomena and comparing their error norms. First, the given solution sphere is discretized by using an invariant discretization grid point. Next, by using Taylor series expansion, we gain discretized nonlinear difference scheme of given model problem. By rearranging this scheme, we gain three proposed schemes. To verify validity and applicability of proposed techniques, one model illustration with subordinated to three different original conditions that satisfy entropy condition are considered, and solved it at each specific interior grid points of solution interval, by applying all of the techniques. The stability and convergent analysis of present three techniques are also worked by supporting both theoretical and numerical fine statements. The accuracy of present techniques has been measured in the sense of average absolute error, root mean square error, and maximum absolute error norms. Comparisons of numerical gets crimes attained by these three methods are presented in table. Physical behaviors of numerical results are also presented in terms of graphs. As we can see from numerical results given in both tables and graphs, the approximate solution is good agreement with exact solutions. Therefore, the present systems approaches are relatively effective and virtually well suited to approximate the solution of in-viscous Burger equation.

MSC:

65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics

References:

[1] Mohamed, N. A., Solving one- and two-dimensional unsteady Burgers’ equation using fully implicit finite difference schemes, Arab Journal of Basic and Applied Sciences, 26, 1, 254-268 (2019) · doi:10.1080/25765299.2019.1613746
[2] Ewing, R. E., The Mathematics of Reservoir Simulation (1983), Philadelphia: SIAM, Philadelphia · Zbl 0533.00031
[3] Miller, J.; Oriordan, E.; Shishkin, G.; Shishkina, L., Fitted mesh methods for problems with parabolic boundary layers, Mathematical Proceedings of the Royal Irish Academy, Royal Irish Academy, 98, 173-190 (1998) · Zbl 0934.65091
[4] Zhao, J.; Li, H.; Fang, Z.; Bai, X., Numerical solution of burgers’ equation based on mixed finite volume element methods, Discrete Dynamics in Nature and Society, 2020, 1-13 (2020) · Zbl 1459.65171 · doi:10.1155/2020/6321209
[5] Koroche, K. A., Weighted average based differential quadrature method for one-dimensional homogeneous first order nonlinear parabolic partial differential equation, Indian Journal of Advanced Mathematics, 1, 1, 15-28 (2021) · doi:10.35940/ijam.b1104.041121
[6] Piao, X.; Kim, S.; Kim, P.; Kwon, J.; Yi, D., An interaction-free backward semi- Lagrangian scheme for guiding center problem, SIAM Journal on Numerical Analysis, 53, 1, 619-643 (2015) · Zbl 1318.65054 · doi:10.1137/130942218
[7] Jiwari, R., A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation, Computer Physics Communications, 183, 11, 2413-2423 (2012) · Zbl 1302.35337 · doi:10.1016/j.cpc.2012.06.009
[8] Mittal, R. C.; Singhal, P., Numerical solution of Burger’s equation, Communications in Numerical Methods in Engineering, 9, 5, 397-406 (1993) · Zbl 0782.65147 · doi:10.1002/cnm.1640090505
[9] Jiwari, R.; Mittal, R. C.; Sharma, K. K., A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers’ equation, Applied Mathematics and Computation, 219, 12, 6680-6691 (2013) · Zbl 1335.65070 · doi:10.1016/j.amc.2012.12.035
[10] Wani, S. S.; Thakar, S., Weighted Average Method for one dimensional nonlinear Burgers equation, International Journal of Physical, Chemical and Mathematical Sciences, 2, 16-27 (2013)
[11] Kadalbajoo, M. K.; Awasthi, A., A numerical method based on Crank-Nicolson scheme for Burgers’ equation, Applied Mathematics and Computation, 182, 2, 1430-1442 (2006) · Zbl 1112.65081 · doi:10.1016/j.amc.2006.05.030
[12] Alam Khan, N.; Ara, A.; Mahmood, A., Numerical solutions of time ‐ fractional Burgers equations, International Journal of Numerical Methods for Heat and Fluid Flow, 22, 2, 175-193 (2012) · Zbl 1357.65208 · doi:10.1108/09615531211199818
[13] Khan, N. A.; Hameed, T.; Razzaq, O. A., Elegant scheme for one-way wave propagation in Kerr media, The European Physical Journal Plus, 135, 2, 1-33 (2020) · doi:10.1140/epjp/s13360-020-00153-w
[14] Bak, S.; Kim, P.; Piao, X.; Bu, S., Numerical solution of advection-diffusion type equation by modified error correction scheme, Advances in Difference Equations, 1, 1-14 (2018) · Zbl 1448.65089
[15] Yağmurlu, M.; Uçar, Y.; Çelikkaya, I., Higher order splitting method for numerical solution of nonlinear coupled system viscous burger’s equation, Konuralp Journal of Mathematics, 8, 2, 234-243 (2020)
[16] LeVeque, R. J., Numerical Methods for Conservation Laws, 132 (1992), Berlin: Birkhduser, Berlin · Zbl 0847.65053
[17] Gowrisankar, S.; Natesan, S., An efficient robust numerical method for singularly perturbed Burgers’ equation, Applied Mathematics and Computation, 346, 385-394 (2019) · Zbl 1429.65182 · doi:10.1016/j.amc.2018.10.049
[18] Piao, X.; Bu, S.; Bak, S.; Kim, P., An iteration free backward semi-Lagrangian scheme for solving incompressible Navier-Stokes equations, Journal of Computational Physics, 283, 189-204 (2015) · Zbl 1351.76179 · doi:10.1016/j.jcp.2014.11.040
[19] Abazari, R.; Borhanifar, A., Numerical study of the solution of the burgers and coupled Burgers equations by a differential transformation method, Computers & Mathematics with Applications, 59, 8, 2711-2722 (2010) · Zbl 1193.65178 · doi:10.1016/j.camwa.2010.01.039
[20] Burgers, J. M., A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics, 1, 171-199 (1948) · doi:10.1016/s0065-2156(08)70100-5
[21] Özis, T.; Esen, A.; Kutluay, S., Numerical solution of Burgers’ equation by quadratic B-spline finite elements, Applied Mathematics and Computation, 165, 1, 237-249 (2005) · Zbl 1070.65097 · doi:10.1016/j.amc.2004.04.101
[22] Roos, H. G.; Stynes, M.; Tobiska, L., Robust numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics, 24 (2008), Berlin: Springer-Verlag, Berlin · Zbl 1155.65087
[23] Kim, S. D.; Piao, X.; Kim, D. H.; Kim, P., Convergence on error correction methods for solving initial value problems, Journal of Computational and Applied Mathematics, 236, 17, 4448-4461 (2012) · Zbl 1248.65073 · doi:10.1016/j.cam.2012.04.015
[24] Kutluay, S.; Bahadir, A. R.; Özdeş, A., Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, Journal of Computational and Applied Mathematics, 103, 2, 251-261 (1999) · Zbl 0942.65094 · doi:10.1016/s0377-0427(98)00261-1
[25] Oozes, T.; Aksan, E. N.; Ozdes, A., A finite element approach for a solution of Burgers’ equation, Applied Mathematics and Computation, 139, 2-3, 417-428 (2003) · Zbl 1028.65106
[26] Ahmad, H.; Khan, T. A.; Cesarano, C., Numerical solutions of coupled burgers′ equations, Axioms, 8, 4, 119 (2019) · doi:10.3390/axioms8040119
[27] Khater, A. H.; Temsah, R. S.; Callebaut, D. K., Numerical solutions for some coupled nonlinear evolution equations by using the spectral collocation method, Mathematical and Computer Modeling, 48, 7-8, 1237-1253 (2008) · Zbl 1187.65114 · doi:10.1016/j.mcm.2008.02.001
[28] Oruç, Ö.; Bulut, F.; Esen, A., Chebyshev wavelet method for numerical solutions of coupled Burgers’ equation, Hacettepe Journal of Mathematics and Statistics, 48, 1, 1-16 (2019) · Zbl 1471.65163
[29] Kim, P.; Piao, X.; Kim, S. D., An error corrected Euler method for solving stiff problems based on Chebyshev collocation, SIAM Journal on Numerical Analysis, 49, 6, 2211-2230 (2011) · Zbl 1273.65095 · doi:10.1137/100808691
[30] Zheng, J. G.; Lee, T. S.; Winoto, S. H., A piecewise parabolic method for barotropic and nonbarotropic two ‐ fluid flows, International Journal of Numerical Methods for Heat and Fluid Flow, 18, 6, 708-729 (2008) · Zbl 1231.76227 · doi:10.1108/09615530810885533
[31] Mignone, A.; Plewa, T.; Bodo, G., The piecewise parabolic method for multidimensional relativistic fluid dynamics, The Astrophysical Journal - Supplement Series, 160, no. 1, 199 (2005) · doi:10.1086/430905
[32] Wu, L., Dufort-frankel-Type methods for linear and nonlinear schrödinger equations, SIAM Journal on Numerical Analysis, 33, 4, 1526-1533 (1996) · Zbl 0860.65102 · doi:10.1137/s0036142994270636
[33] Tadmor, E., The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs scheme, Mathematics of Computation, 43, 168, 353-368 (1984) · Zbl 0598.65067 · doi:10.1090/s0025-5718-1984-0758188-8
[34] Hull, J.; White, A., Valuing derivative securities using the explicit finite difference method, Journal of Financial and Quantitative Analysis, 25, 1, 87-100 (1990) · doi:10.2307/2330889
[35] Aliyi Koroche, K., Numerical solution for one dimensional linear types of parabolic partial differential equation and application to heat equation, Mathematics and Computer Science, 5, 4, 76-85 (2020) · doi:10.11648/j.mcs.20200504.12
[36] Kutluay, S.; Esen, A.; Dag, I., Numerical solutions of the Burgers’ equation by the least-squares quadratic B-spline finite element method, Journal of Computational and Applied Mathematics, 167, 1, 21-33 (2004) · Zbl 1052.65094 · doi:10.1016/j.cam.2003.09.043
[37] Asrat, T.; File, G.; Aga, T., Fourth-order stable central difference method for self-adjoint singular perturbation problems, Ethiopian Journal of Science and Technology, 9, 1, 53-68 (2016) · doi:10.4314/ejst.v9i1.5
[38] Beckett, G.; Mackenzie, J. A., Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem, Applied Numerical Mathematics, 35, 2, 87-109 (2000) · Zbl 0963.65086 · doi:10.1016/s0168-9274(99)00065-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.