×

Numerical solutions for some coupled nonlinear evolution equations by using spectral collocation method. (English) Zbl 1187.65114

Summary: In this paper, we introduce a spectral collocation method based on Lagrange polynomials for spatial derivatives to obtain numerical solutions for some coupled nonlinear evolution equations. The problem is reduced to a system of ordinary differential equations that are solved by the fourth order Runge-Kutta method. Numerical results of coupled Korteweg-de Vries (KdV) equations, coupled modified KdV equations, coupled KdV system and Boussinesq system are obtained. The present results are in good agreement with the exact solutions. Moreover, the method can be applied to a wide class of coupled nonlinear evolution equations.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Whitham, G., Linear and Nonlinear Waves (1974), Wiley: Wiley New York · Zbl 0373.76001
[2] Davidson, R., Methods in Nonlinear Plasma Theory (1972), Academic Press: Academic Press New York
[3] Toda, M., Studies of a Nonlinear Lattice (1981), Springer: Springer Berlin · Zbl 0465.70014
[4] Guy, P.; Scott, S., Chemical Oscillations and Instabilities (1990), Clarendon Press: Clarendon Press Oxford
[5] Muray, J., Mathematical Biology (1989), Springer: Springer Berlin · Zbl 0682.92001
[6] Gottwald, G.; Grimshaw, R.; Malomed, B., Parametric envelope solitons in coupled KdV equations, Phys. Lett. A, 227, 47-54 (1997) · Zbl 0962.35506
[7] Khater, A. H.; Malfliet, W.; Kamel, E. S., Travelling wave solutions of some classes of nonlinear evolution equations in \((1 + 1)\) and higher dimensions, Math. Comput. Simulation, 64, 247-258 (2004) · Zbl 1039.65071
[8] Hirota, R.; Satsuma, J., Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A, 85, 407-408 (1981)
[9] Kaya, D.; Inan, I. E., Exact and numerical travelling wave solutions for nonlinear coupled equations using symbolic computation, Appl. Math. Comput., 151, 775-787 (2004) · Zbl 1048.65096
[10] Fan, E., Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MKdV equation, Phys. Lett. A, 282, 18-22 (2001) · Zbl 0984.37092
[11] Wu, Y. T.; Geng, X. G.; Hu, X. B.; Zhu, S. M., Generalized Hirota-Satsuma coupled Korteweg-de Vries equation and Miura transformations, Phys. Lett. A, 64, 255-259 (1999) · Zbl 0935.37029
[12] Shen, G., A Course on Nonlinear Waves (1994), Dordrecht: Dordrecht Kluwer
[13] Malfliet, W., The tanh method, A tool for solving certain classes of non-linear PDEs, Math. Methods Appl. Sci., 28, 2031-2035 (2005) · Zbl 1125.65348
[14] Zhengdi, Z.; Qinsheng, B.; Jianping, W., Bifurcations of travelling wave solutions for two coupled variant Boussinesq equations in shallow water waves, Chaos Solitons Fractals, 24, 631-643 (2005) · Zbl 1117.35073
[15] Hassan, M. M.; Khater, A. H., Jacobi elliptic function solutions of three coupled nonlinear physical equations, Z. Naturforsch. A, 60, 237-244 (2005)
[16] Baldwin, D.; Göktas, Ü.; Hereman, W.; Hong, L.; Martino, R. S.; Miller, J. C., Symbolic computations of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs, J. Symbolic Comput., 37, 669-705 (2004) · Zbl 1137.35324
[17] Khater, A. H.; Abdallah, A. A.; El-Kalaawy, O. H.; Callebaut, D. K., Backlund transformations and exact solutions for nonlinear evolution equations in Rayleigh-Taylor instability, J. Phys. Soc. Japan, 68, 2466-2467 (1999) · Zbl 0941.76565
[18] Khater, A. H.; Abdallah, A. A.; El-Kalaawy, O. H.; Callebaut, D. K., Backlund transformations, a simple transformation and exact solutions for dust-acoustic solitary waves in dusty plasma consisting of cold dust particles and two-temperature isothermal ions, Phys. Plasmas, 6, 4542-4547 (1999)
[19] Khater, A. H.; Hassan, A. A., Travelling and periodic wave solutions of some nonlinear wave equations, Z. Naturforsch. A, 59, 389-396 (2004)
[20] Khater, A. H.; Hassan, A. A.; Temsah, R. S., Exact solutions with Jacobi elliptic functions of two nonlinear models for ion-acoustic plasma waves, J. Phys. Soc. Japan, 74, 1431-1435 (2005) · Zbl 1076.35099
[21] Khater, A. A.; Hassan, A. A.; Temsah, R. S., Cnoidal wave solutions for a class of fifth-order KdV equations, Math. Comput. Simulation, 70, 221-226 (2005) · Zbl 1125.35403
[22] Khater, A. H.; Malfliet, W.; Callebaut, D. K.; Kamel, E. S., Travelling wave solutions of some classes of nonlinear evolution equations in \((1 + 1)\) and \((2 + 1)\) dimensions, J. Comput. Appl. Math., 140, 469-477 (2002) · Zbl 0997.35078
[23] Khater, A. H.; Malfliet, W.; Callebaut, D. K.; Kamel, E. S., The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction-diffusion equations, Chaos Solitons Fractals, 14, 513-522 (2002) · Zbl 1002.35066
[24] Khater, A. H.; Temsah, R. S., Numerical solutions of some nonlinear evolution equations by Chebyshev spectral collocation methods, Int. J. Comput. Math., 84, 305-316 (2007) · Zbl 1117.65142
[25] A.H. Khater, R.S. Temsah, A.A. Hassan, A Chebyshev spectral collocation method for solving Burgers’- type equations, J. Comput. Appl. Math. (in press); A.H. Khater, R.S. Temsah, A.A. Hassan, A Chebyshev spectral collocation method for solving Burgers’- type equations, J. Comput. Appl. Math. (in press) · Zbl 1153.65102
[26] Baltensperger, R.; Berrut, J. P., The errors in calculating the pseudospectral differentiation matrices for Chebyshev-Gauss-Lobatto point, Comput. Math. Appl., 37, 41-48 (1999) · Zbl 0940.65021
[27] Baltensperger, R.; Trummer, M. R., Spectral differencing with a twist, SIAM J. Sci. Comput., 24, 1465-1487 (2003) · Zbl 1034.65016
[28] Baltensperger, R., Improving the accuracy of the matrix differentiation method for arbitrary collocation points, Appl. Numer. Math., 33, 143-149 (2000) · Zbl 0964.65021
[29] Boyd, J. P., Chebyshev and Fourier spectral methods, (Lecture Notes in Engineering, vol. 49 (1989), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0987.65122
[30] Funaro, D., Polynomial Approximation of Differential Equations (1992), Springer Verlag · Zbl 0774.41010
[31] Gottlieb, D.; Orszag, S., Numerical Analysis of Spectral Methods: Theory and Applications (1977), SIAM: SIAM Philadelphia, PA · Zbl 0412.65058
[32] Canuto, C.; Quarteroni, A.; Hussaini, M. Y.; Zang, T., Spectral Methods in Fluid Mechanics (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0658.76001
[33] Don, W. S.; Solomonoff, A., Accuracy and speed in computing the Chebyshev collocation derivative, SIAM J. Sci. Comput., 16, 1253-1268 (1995) · Zbl 0840.65010
[34] Don, W. S.; Solomonoff, A., Accuracy enhancement for higher derivatives using Chebyshev collocation and a mapping technique, SIAM J. Sci. Comput., 18, 1040-1055 (1997) · Zbl 0906.65019
[35] Huang, W.; Sloan, D. M., The pseudospectral method for solving differential eigenvalue problems, J. Comput. Phys., 111, 399-409 (1994) · Zbl 0799.65091
[36] Welfert, B. D., Generation of pseudospectral differentiation matrices I, SIAM J. Numer. Anal., 34, 1640-1657 (1997) · Zbl 0889.65013
[37] Costa, B.; Don, W. S., On the computation of high order pseudospectral derivatives, Appl. Numer. Math., 33, 151-159 (2000) · Zbl 0964.65020
[38] Henrici, P., Essentials of Numerical Analysis (1982), Wiley: Wiley New York · Zbl 0584.65001
[39] Funaro, D., A preconditioning matrix for the Chebyshev differencing operator, SIAM J. Numer. Anal., 24, 1024-1031 (1987) · Zbl 0635.65018
[40] Funaro, D., Computing the inverse of the Chebyshev collocation derivative, SIAM J. Sci. Stat. Comput., 9, 1050-1057 (1988) · Zbl 0662.65024
[41] Trefethen, L. N.; Trummer, M. R., An instability phenomenon in spectral methods, SIAM J. Numer. Anal., 24, 1008-1023 (1987) · Zbl 0636.65124
[42] Tang, T.; Trummer, M. R., Boundary layer resolving pseudospectral methods for singular perturbation problems, SIAM J. Sci. Comput., 17, 430-438 (1996) · Zbl 0851.65058
[43] Reddy, S. C.; Trefethen, L. N., Stability of the method of lines, Numer. Math., 62, 235-267 (1992) · Zbl 0734.65077
[44] Bayliss, A.; Class, A.; Matkowsky, B., Roundoff error in computing derivatives using the Chebyshev differentiation matrix, J. Comput. Phys., 116, 380-383 (1994) · Zbl 0826.65014
[45] Breuer, K. S.; Everson, R. M., On the errors incurred calculating derivatives using Chebyshev polynomials, J. Comput. Phys., 99, 56-67 (1992) · Zbl 0747.65009
[46] Rothman, E. E., Reducing round-off error in Chebyshev pseudospectral computations, (Durand, M.; El Dabaghi, F., High Performance Computing II (1991), Elsevier: Elsevier North-Holland), 423-439
[47] Schneider, C.; Werner, W., Some new aspects of rational interpolation, Math. Comput., 47, 285-299 (1986) · Zbl 0612.65005
[48] Solomonoff, A.; Turkel, E., Global properties of pseudospectral methods, J. Comput. Phys., 81, 239-276 (1989) · Zbl 0668.65091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.