×

Convergence of mock Fourier series on generalized Bernoulli convolutions. (English) Zbl 1497.42006

Summary: We investigate the problem of convergence of a class of trigonometric series supported on the generalized Bernoulli convolutions \(\mu\) on \(\mathbb{R} \). Our main result shows that, under a technical condition, there are continuum many exponential orthonormal bases for \(L^2(\mu )\) such that the associated mock Fourier series converge to itself in the sense of uniform, \(L^p\) \((1\leq p\leq \infty )\)-norm and \(\mu \)-almost pointwise.

MSC:

42A20 Convergence and absolute convergence of Fourier and trigonometric series
42B25 Maximal functions, Littlewood-Paley theory
28A80 Fractals
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
Full Text: DOI

References:

[1] An, L. X.; He, X. G., A class of spectral Moran measures, J. Funct. Anal., 266, 343-354 (2014) · Zbl 1303.28009 · doi:10.1016/j.jfa.2013.08.031
[2] An, L. X.; He, X. G.; Lau, K. S., Spectrality of a class of infinite convolutions, Adv. Math., 283, 362-376 (2015) · Zbl 1323.28007 · doi:10.1016/j.aim.2015.07.021
[3] An, L. X.; Fu, X. Y.; Lai, C. K., On spectral Cantor-Moran measures and a variant of Bourgain’s sum of sine problem, Adv. Math., 349, 84-124 (2019) · Zbl 1416.42005 · doi:10.1016/j.aim.2019.04.014
[4] Carleson, L., On convergence and growth of partial sums of Fourier series, Acta. Math., 116, 135-157 (1966) · Zbl 0144.06402 · doi:10.1007/BF02392815
[5] Dai, X. R., When does a Bernoulli convolution admit a spectrum?, Adv. Math., 231, 187-208 (2012) · Zbl 1266.42012 · doi:10.1016/j.aim.2012.06.026
[6] Dai, X. R., Spectra of Cantor measures, Math. Ann., 366, 1621-1647 (2016) · Zbl 1352.42009 · doi:10.1007/s00208-016-1374-5
[7] Dai, X. R.; He, X. G.; Lai, C. K., Spectral property of Cantor measures with consecutive digits, Adv. Math., 242, 187-208 (2013) · Zbl 1277.28009 · doi:10.1016/j.aim.2013.04.016
[8] Deng, Q. R.; Dong, X. H.; Li, M. T., Tree structure of spectra of spectral self-affine measures, J. Funct. Anal., 277, 3, 937-957 (2019) · Zbl 1419.42021 · doi:10.1016/j.jfa.2019.04.006
[9] Dutkay, D.; Hausserman, J., Number theory problems from the harmonic analysis of a fractal, J. Number Theory, 159, 7-26 (2016) · Zbl 1400.11006 · doi:10.1016/j.jnt.2015.07.009
[10] Dutkay, D.; Jorgensen, P., Iterated function systems, Ruelle operators, and invariant projective measures, Math. Comput., 75, 256, 1931-1970 (2006) · Zbl 1117.28008 · doi:10.1090/S0025-5718-06-01861-8
[11] Dutkay, D.; Jorgensen, P., Fourier duality for fractal measures with affine scales, Math. Comput., 81, 280, 2253-2273 (2012) · Zbl 1277.47033 · doi:10.1090/S0025-5718-2012-02580-4
[12] Dutkay, D.; Lai, C. K., Spectral measures generated by arbitrary and random convolutions, J. Math. Pures Appl., 107, 183-204 (2017) · Zbl 1364.42011 · doi:10.1016/j.matpur.2016.06.003
[13] Dutkay, D.; Han, D. G.; Sun, Q. Y., On spectra of a Cantor measure, Adv. Math., 221, 251-276 (2009) · Zbl 1173.28003 · doi:10.1016/j.aim.2008.12.007
[14] Dutkay, D.; Han, D. G.; Sun, Q. Y., Divergence of the mock and scrambled Fourier series on fractal measures, Trans. Am. Math. Soc., 366, 2191-2208 (2014) · Zbl 1406.42008 · doi:10.1090/S0002-9947-2013-06021-7
[15] Dutkay, D.; Hausserman, J.; Lai, C. K., Hadamard triples generate self-affine spectral measures, Trans. Am. Math. Soc., 371, 1439-1481 (2019) · Zbl 1440.42030 · doi:10.1090/tran/7325
[16] Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions (2015), Boca Raton: CRC Press, Boca Raton · Zbl 1310.28001 · doi:10.1201/b18333
[17] Falconer, K. J., Fractal Geometry, Mathematical Foundations and Applications (1990), New York: Wiley, New York · Zbl 0689.28003
[18] Farkas, B.; Matolcsi, M.; Móra, P., On Fuglede’s conjecture and the existence of universal spectra, J. Fourier Anal. Appl., 12, 5, 483-494 (2006) · Zbl 1106.42031 · doi:10.1007/s00041-005-5069-7
[19] Feng, D. J.; Wen, Z. Y.; Wu, J., Some dimensional results for homogeneous Moran sets, Sci. China Ser. A, 40, 475-482 (1997) · Zbl 0881.28003 · doi:10.1007/BF02896955
[20] Folland, G. B., Real Analysis. Modern Techniques and Their Applications (1999), New York: Wiley-Interscience, New York · Zbl 0924.28001
[21] Fu, Y. S., A characterization on the spectra of self-affine measures, J. Fourier Anal. Appl., 25, 732-750 (2019) · Zbl 1415.42003 · doi:10.1007/s00041-018-9621-7
[22] Fu, Y. S.; He, L., Scaling of spectra of a class of random convolution on ℝ, J. Funct. Anal., 273, 3002-3026 (2017) · Zbl 1375.28013 · doi:10.1016/j.jfa.2017.06.007
[23] Fu, Y. S.; He, X. G.; Wen, Z. X., Spectra of Bernoulli convolutions and random convolutions, J. Math. Pures Appl., 116, 105-131 (2018) · Zbl 1400.42005 · doi:10.1016/j.matpur.2018.06.002
[24] Fuglede, B., Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal., 16, 101-121 (1974) · Zbl 0279.47014 · doi:10.1016/0022-1236(74)90072-X
[25] He, L.; He, X.-G., On the Fourier orthonormal bases of Cantor-Moran measures, J. Funct. Anal., 272, 1980-2004 (2017) · Zbl 1357.28010 · doi:10.1016/j.jfa.2016.09.021
[26] Hu, T. Y.; Lau, K. S., Spectral property of the Bernoulli convolutions, Adv. Math., 219, 2, 554-567 (2008) · Zbl 1268.42044 · doi:10.1016/j.aim.2008.05.004
[27] Hunt, R., On the convergence of Fourier series, Orthogonal Expansions and Their Continuous Analogues, 235-255 (1968), Carbondale: Southern Illinois University Press, Carbondale · Zbl 0159.35701
[28] Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J., 30, 713-747 (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[29] Jorgensen, P.; Pedersen, S., Dense analytic subspaces in fractal \(L^2\) spaces, J. Anal. Math., 75, 185-228 (1998) · Zbl 0959.28008 · doi:10.1007/BF02788699
[30] Kolountzakis, M. N.; Matolcsi, M., Tiles with no spectra, Forum Math., 18, 519-528 (2006) · Zbl 1130.42039 · doi:10.1515/FORUM.2006.026
[31] Łaba, I.; Wang, Y., On spectral Cantor measures, J. Funct. Anal., 193, 409-420 (2002) · Zbl 1016.28009 · doi:10.1006/jfan.2001.3941
[32] Lev, N., Matolcsi, M.: The Fuglede conjecture for convex domains is true in all dimensions. arXiv:1904.12262
[33] Li, J. L., \( \mu_{M,D}\)-orthogonality and compatible pair, J. Funct. Anal., 244, 2, 628-638 (2007) · Zbl 1119.42014 · doi:10.1016/j.jfa.2006.10.003
[34] Liu, J. C.; Dong, X. H.; Li, J. L., Non-spectral problem for the planar self-affine measures, J. Funct. Anal., 273, 2, 705-720 (2017) · Zbl 1366.28009 · doi:10.1016/j.jfa.2017.04.003
[35] Mattila, P., Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0819.28004 · doi:10.1017/CBO9780511623813
[36] Peres, Y.; Schlag, W.; Solomyak, B.; Bandt, C.; Graf, S.; Zahle, M., Sixty years of Bernoulli convolutions, Fractal Geometry and Stochastics II, 39-65 (2000), Basel: Birkhäuser, Basel · Zbl 0961.42006 · doi:10.1007/978-3-0348-8380-1_2
[37] Picioroaga, G.; Weber, E. S., Fourier frames for the Cantor-4 set, J. Fourier Anal. Appl., 23, 2, 324-343 (2017) · Zbl 1362.42066 · doi:10.1007/s00041-016-9471-0
[38] Strichartz, R., Remarks on: “Dense analytic subspaces in fractal \(L^2\)-spaces” by P. Jorgensen and S. Pedersen, J. Anal. Math., 75, 229-231 (1998) · Zbl 0959.28009 · doi:10.1007/BF02788700
[39] Strichartz, R., Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math., 81, 209-238 (2000) · Zbl 0976.42020 · doi:10.1007/BF02788990
[40] Strichartz, R., Convergence of mock Fourier series, J. Anal. Math., 99, 333-353 (2006) · Zbl 1134.42308 · doi:10.1007/BF02789451
[41] Terence, T., Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett., 11, 251-258 (2004) · Zbl 1092.42014 · doi:10.4310/MRL.2004.v11.n2.a8
[42] Wang, Z. Y.; Liu, J. C., Non-spectrality of self-affine measures, J. Funct. Anal., 277, 10, 3723-3736 (2019) · Zbl 1497.28010 · doi:10.1016/j.jfa.2019.05.015
[43] Weber, E. S., A Paley-Wiener type theorem for singular measures on \((-1/2,1/2)\), J. Fourier Anal. Appl., 25, 5, 2492-2502 (2019) · Zbl 1427.30047 · doi:10.1007/s00041-019-09671-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.