×

Improved regularity for the parabolic normalized \(p\)-Laplace equation. (English) Zbl 1497.35076

Hölder and Sobolev regularity of viscosity solutions of the normalized equation \[ \frac{\partial u}{\partial t} - |\nabla u|^{2-p}\,\nabla\!\cdot\!\bigl(|\nabla u|^{p-2}\nabla u\bigr)\,=\,f(x,t) \] are studied when \(p \approx 2\). As \(p \to 2\) the left-hand side approaches the heat operator \(u_t-\Delta u\). Thus the restriction that \(p\) is sufficiently close to \(2\) should improve the regularity. Here \(f(x,t)\) is continuous and bounded.
First, the known local \(C^{1+\alpha,(1+\alpha)/2}\) estimate is proved again. Then a local \(W^{2,1;q}\) estimate is obtained for every finite \(q>1\). The gain of keeping \(p\) very close to \(2\) is that the range of \(q\) is unrestricted. It was previously known that this holds with \(q < 2 + \delta\) for some \(\delta > 0\), but in a much wider range of \(p\), including \(1< p < 3\).
The equation is first regularized. An approximation method due to Caffarelli is essential.

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35K55 Nonlinear parabolic equations
35K92 Quasilinear parabolic equations with \(p\)-Laplacian
35D40 Viscosity solutions to PDEs

References:

[1] Araújo, D.; Teixeira, E.; Urbano, JM, A proof of the \(C^{p^{\prime }}\)-regularity conjecture in the plane, Adv. Math., 316, 541-553 (2017) · Zbl 1379.35144 · doi:10.1016/j.aim.2017.06.027
[2] Attouchi, A., Local regularity for quasi-linear parabolic equations in non-divergence form, Nonlinear Anal., 199 (2020) · Zbl 1447.35087 · doi:10.1016/j.na.2020.112051
[3] Attouchi, A.; Parviainen, M., Hölder regularity for the gradient of the inhomogeneous parabolic normalized \(p\)-Laplacian, Commun. Contemp. Math., 20, 4, 1750035 (2018) · Zbl 1391.35194 · doi:10.1142/S0219199717500353
[4] Attouchi, A.; Ruosteenoja, E., Remarks on regularity for \(p\)-Laplacian type equations in non-divergence form, J. Differ. Equ., 265, 5, 1922-1961 (2018) · Zbl 1395.35088 · doi:10.1016/j.jde.2018.04.017
[5] Attouchi, A.; Ruosteenoja, E., Gradient regularity for a singular parabolic equation in non-divergence form, Discrete Contin. Dyn. Syst., 40, 10, 5955-5972 (2020) · Zbl 1446.35066 · doi:10.3934/dcds.2020254
[6] Banerjee, A.; Garofalo, N., Gradient bounds and monotonicity of the energy for some nonlinear singular diffusion equations, Indiana Univ. Math. J., 62, 2, 699-736 (2013) · Zbl 1296.35088 · doi:10.1512/iumj.2013.62.4969
[7] Cabré, X.; Caffarelli, L., Fully nonlinear elliptic equations (1995), Providence: American Mathematical Society, Providence · Zbl 0834.35002
[8] Caffarelli, L., Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math. (2), 130, 1, 189-213 (1989) · Zbl 0692.35017 · doi:10.2307/1971480
[9] Crandall, M.; Kocan, M.; Święch, A., \(L^p\)-theory for fully nonlinear uniformly parabolic equations, Comm. Partial Differ. Equ., 25, 11-12, 1997-2053 (2000) · Zbl 0973.35097 · doi:10.1080/03605300008821576
[10] da Silva, JV; Teixeira, E., Sharp regularity estimates for second order fully nonlinear parabolic equations, Math. Ann., 369, 3-4, 1623-1648 (2017) · Zbl 1377.35051 · doi:10.1007/s00208-016-1506-y
[11] Does, K., An evolution equation involving the normalized \(p\)-Laplacian, Commun. Pure Appl. Anal., 10, 1, 361-396 (2011) · Zbl 1229.35132 · doi:10.3934/cpaa.2011.10.361
[12] Dong, H.; Peng, F.; Zhang, Y.; Zhou, Y., Hessian estimates for equations involving \(p\)-Laplacian via a fundamental inequality, Adv. Math., 370 (2020) · Zbl 1442.35195 · doi:10.1016/j.aim.2020.107212
[13] Elmoataz, A.; Toutain, M.; Tenbrinck, D., On the \(p\)-Laplacian and \(\infty \)-Laplacian on graphs with applications in image and data processing, SIAM J. Imaging Sci., 8, 4, 2412-2451 (2015) · Zbl 1330.35488 · doi:10.1137/15M1022793
[14] Evans, L.: The 1-Laplacian, the \(\infty \)-Laplacian and differential games. In: Perspectives in Nonlinear Partial Differential Equations, volume 446 of Contemp. Math., pp. 245-254. American Mathematical Society, Providence, (2007) · Zbl 1200.35114
[15] Evans, L., Spruck, J.: Motion of level sets by mean curvature. I [ MR1100206 (92h:35097)]. In: Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, pp 328-374. Springer, Berlin. (1999)
[16] Fang, Y.; Zhang, C., Gradient Hölder regularity for parabolic normalized \(p( x, t)\)-Laplace equation, J. Differ. Equ., 295, 211-232 (2021) · Zbl 1470.35093 · doi:10.1016/j.jde.2021.05.062
[17] Høeg, F.; Lindqvist, P., Regularity of solutions of the parabolic normalized \(p\)-Laplace equation, Adv. Nonlinear Anal., 9, 1, 7-15 (2020) · Zbl 1412.35192 · doi:10.1515/anona-2018-0091
[18] Imbert, C.; Jin, T.; Silvestre, L., Hölder gradient estimates for a class of singular of degenerate parabolic equations, Adv. Nonlinear Anal., 8, 1, 845-867 (2019) · Zbl 1418.35250 · doi:10.1515/anona-2016-0197
[19] Imbert, C.; Silvestre, L., \(C^{1,\alpha }\) regularity of solutions of some degenerate fully non-linear elliptic equations, Adv. Math., 233, 196-206 (2013) · Zbl 1262.35065 · doi:10.1016/j.aim.2012.07.033
[20] Imbert, C., Silvestre, L.: An introduction to fully nonlinear parabolic equations. In: An Introduction to the Kähler-Ricci Flow, volume 2086 of Lecture Notes in Math., pp. 7-88. Springer, Cham, (2013) · Zbl 1282.35004
[21] Jin, T.; Silvestre, L., Hölder gradient estimates for parabolic homogeneous \(p\)-Laplacian equations, J. Math. Pures Appl. (9), 108, 1, 63-87 (2017) · Zbl 1515.35075 · doi:10.1016/j.matpur.2016.10.010
[22] Juutinen, P.; Kawohl, B., On the evolution governed by the infinity Laplacian, Math. Ann., 335, 4, 819-851 (2006) · Zbl 1110.35037 · doi:10.1007/s00208-006-0766-3
[23] Kohn, R.; Serfaty, S., A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59, 3, 344-407 (2006) · Zbl 1206.53072 · doi:10.1002/cpa.20101
[24] Krylov, N., Nonlinear elliptic and parabolic equations of the second order, volume 7 of Mathematics and its Applications (Soviet Series) (1987), Dordrecht: D. Reidel Publishing Co., Dordrecht · Zbl 0619.35004 · doi:10.1007/978-94-010-9557-0
[25] Krylov, N.; Safonov, M., An estimate for the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR, 245, 1, 18-20 (1979)
[26] Krylov, N.; Safonov, M., A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat., 44, 1, 161-175 (1980) · Zbl 0439.35023
[27] Manfredi, J.; Parviainen, M.; Rossi, J., An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal., 42, 5, 2058-2081 (2010) · Zbl 1231.35107 · doi:10.1137/100782073
[28] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D., Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22, 1, 167-210 (2009) · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[29] Peres, Y.; Sheffield, S., Tug-of-war with noise: a game-theoretic view of the \(p\)-Laplacian, Duke Math. J., 145, 1, 91-120 (2008) · Zbl 1206.35112 · doi:10.1215/00127094-2008-048
[30] Pimentel, E., Santos, M.: Asymptotic methods in regularity theory for nonlinear elliptic equations: a survey. In: PDE Models for Multi-agent Phenomena, volume 28 of Springer INdAM Ser., pages 167-194. Springer, Cham, (2018) · Zbl 1419.35042
[31] Pimentel, E.; Santos, M., Improved regularity for the porous medium equation along zero level sets, Israel J. Math., 245, 1, 135-151 (2021) · Zbl 1494.35056 · doi:10.1007/s11856-021-2208-z
[32] Teixeira, E., Regularity for quasilinear equations on degenerate singular sets, Math. Ann., 358, 1-2, 241-256 (2014) · Zbl 1286.35119 · doi:10.1007/s00208-013-0959-5
[33] Teixeira, E., Universal moduli of continuity for solutions to fully nonlinear elliptic equations, Arch. Ration. Mech. Anal., 211, 3, 911-927 (2014) · Zbl 1292.35132 · doi:10.1007/s00205-013-0688-7
[34] Teixeira, E.; Urbano, JM, A geometric tangential approach to sharp regularity for degenerate evolution equations, Anal. PDE, 7, 3, 733-744 (2014) · Zbl 1295.35296 · doi:10.2140/apde.2014.7.733
[35] Wang, L., On the regularity theory of fully nonlinear parabolic equations. I, Comm. Pure Appl. Math., 45, 1, 27-76 (1992) · Zbl 0832.35025 · doi:10.1002/cpa.3160450103
[36] Wang, L., On the regularity theory of fully nonlinear parabolic equations. II, Comm. Pure Appl. Math., 45, 2, 141-178 (1992) · Zbl 0774.35042 · doi:10.1002/cpa.3160450202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.