×

Gradient Hölder regularity for parabolic normalized \(p(x,t)\)-Laplace equation. (English) Zbl 1470.35093

Summary: We consider the interior Hölder regularity of spatial gradient of viscosity solution to the parabolic normalized \(p(x, t)\)-Laplace equation \[ u_t = \left( \delta_{i j} + ( p ( x , t ) - 2 ) \frac{ u_i u_j}{ | D u |^2} \right) u_{i j} \] with some suitable assumptions on \(p(x, t)\), which arises naturally from a two-player zero-sum stochastic differential game with probabilities depending on space and time.

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35B45 A priori estimates in context of PDEs
35K92 Quasilinear parabolic equations with \(p\)-Laplacian
35D40 Viscosity solutions to PDEs

References:

[1] Attouchi, A., Local regularity for quasi-linear parabolic equations in non-divergence form, Nonlinear Anal., 199, Article 112051 pp. (2020) · Zbl 1447.35087
[2] Attouchi, A.; Parviainen, M., Hölder regularity for the gradient of the inhomogeneous parabolic normalized p-Laplacian, Commun. Contemp. Math., 20, 4, Article 1750035 pp. (2018), 27 pp. · Zbl 1391.35194
[3] Attouchi, A.; Parviainen, M.; Ruosteenoja, E., \( C^{1 , \alpha}\) regularity for the normalized p-Poisson problem, J. Math. Pures Appl., 108, 553-591 (2017) · Zbl 1375.35170
[4] Attouchi, A.; Ruosteenoja, E., Remarks on regularity for p-Laplacian type equations in non-divergence form, J. Differ. Equ., 265, 5, 1922-1961 (2018) · Zbl 1395.35088
[5] Attouchi, A.; Ruosteenoja, E., Gradient regularity for a singular parabolic equation in non-divergence form, Discrete Contin. Dyn. Syst., 40, 10, 5955-5972 (2020) · Zbl 1446.35066
[6] Banerjee, A.; Garofalo, N., Gradient bounds and monotonicity of the energy for some nonlinear singular diffusion equations, Indiana Univ. Math. J., 62, 2, 699-736 (2013) · Zbl 1296.35088
[7] Banerjee, A.; Garofalo, N., Modica type gradient estimates for an inhomogeneous variant of the normalized p-Laplacian evolution, Nonlinear Anal., 121, 458-468 (2015) · Zbl 1327.35223
[8] Banerjee, A.; Garofalo, N., On the Dirichlet boundary value problem for the normalized p-Laplacian evolution, Commun. Pure Appl. Anal., 14, 1, 1-21 (2015) · Zbl 1488.35295
[9] Banerjee, A.; Munive, I. H., Gradient continuity estimates for normalized p-Poisson equation, Commun. Contemp. Math., 22, 8, Article 1950069 pp. (2020), 24 pp. · Zbl 1453.35083
[10] Birindelli, I.; Demengel, F., Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators, J. Differ. Equ., 249, 5, 1089-1110 (2010) · Zbl 1193.35115
[11] Birindelli, I.; Demengel, F., \( C^{1 , \beta}\) regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations, ESAIM Control Optim. Calc. Var., 20, 4, 1009-1024 (2014) · Zbl 1315.35108
[12] Crandall, M. G.; Ishii, H.; Lions, P. L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., 27, 1, 1-67 (1992) · Zbl 0755.35015
[13] DiBenedetto, E.; Friedman, A., Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., 357, 1-22 (1985) · Zbl 0549.35061
[14] Does, K., An evolution equation involving the normalized p-Laplacian, Commun. Pure Appl. Anal., 10, 1, 361-396 (2011) · Zbl 1229.35132
[15] Heino, J., A continuous time tug-of-war game for parabolic \(p(x, t)\)-Laplace-type equations, Commun. Contemp. Math., 21, 5, Article 1850047 pp. (2019), 36 pp. · Zbl 1422.91087
[16] Høeg, F. A.; Lindqvist, P., Regularity of solutions of the parabolic normalized p-Laplace equation, Adv. Nonlinear Anal., 9, 1, 7-15 (2020) · Zbl 1412.35192
[17] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0576.15001
[18] Imbert, C.; Jin, T.; Silvestre, L., Hölder gradient estimates for a class of singular or degenerate parabolic equations, Adv. Nonlinear Anal., 8, 845-867 (2019) · Zbl 1418.35250
[19] Imbert, C.; Silvestre, L., \( C^{1 , \alpha}\) regularity of solutions of some degenerate fully nonlinear elliptic equations, Adv. Math., 233, 196-206 (2013) · Zbl 1262.35065
[20] Jin, T.; Silvestre, L., Hölder gradient estimates for parabolic homogeneous p-Laplacian equations, J. Math. Pures Appl., 108, 1, 63-87 (2017) · Zbl 1515.35075
[21] Juutinen, P., Decay estimates in the supremum norm for the solutions to a nonlinear evolution equation, Proc. R. Soc. Edinb., Sect. A, 144, 3, 557-566 (2014) · Zbl 1293.35040
[22] Juutinen, P.; Lindqvist, P.; Manfredi, J. J., On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33, 3, 699-717 (2001) · Zbl 0997.35022
[23] Juutinen, P.; Lukkari, T.; Parviainen, M., Equivalence of viscosity and weak solutions for the \(p(x)\)-Laplacian, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 27, 1471-1487 (2010) · Zbl 1205.35136
[24] Kawohl, B.; Krömer, S.; Kurtz, J., Radial eigenfunctions for the game-theoretic p-Laplacian on a ball, Differ. Integral Equ., 27, 7-8, 659-670 (2014) · Zbl 1340.35242
[25] Ladyženskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23 (1968), American Mathematical Society: American Mathematical Society Providence, RI, Translated from the Russian by S. Smith · Zbl 0174.15403
[26] Liu, Q.; Schikorra, A., General existence of solutions to dynamic programming equations, Commun. Pure Appl. Anal., 14, 1, 167-184 (2015) · Zbl 1326.35395
[27] Luiro, H.; Parviainen, M.; Saksman, E., Harnack inequality for p-harmonic functions via stochastic games, Commun. Partial Differ. Equ., 38, 11, 1985-2003 (2013) · Zbl 1287.35044
[28] Manfredi, J. J.; Parviainen, M.; Rossi, J. D., An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal., 42, 5, 2058-2081 (2010) · Zbl 1231.35107
[29] Manfredi, J. J.; Parviainen, M.; Rossi, J. D., Dynamic programming principle for tug-of-war games with noise, ESAIM Control Optim. Calc. Var., 18, 1, 81-90 (2012) · Zbl 1233.91042
[30] Parviainen, M.; Ruosteenoja, E., Local regularity for time-dependent tug-of-war games with varying probabilities, J. Differ. Equ., 261, 2, 1357-1398 (2016) · Zbl 1338.35213
[31] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D. B., Tug-of-war and the infinity Laplacian, J. Am. Math. Soc., 22, 167-210 (2009) · Zbl 1206.91002
[32] Peres, Y.; Sheffield, S., Tug-of-war with noise: a game-theoretic view of the p-Laplacian, Duke Math. J., 145, 1, 91-120 (2008) · Zbl 1206.35112
[33] Rossi, J. D., Tug-of-war games and PDEs, Proc. R. Soc. Edinb., Sect. A, 141, 2, 319-369 (2011) · Zbl 1242.35091
[34] Rudd, M., Statistical exponential formulas for homogeneous diffusion, Commun. Pure Appl. Anal., 14, 1, 269-284 (2015) · Zbl 1357.47063
[35] Ruosteenoja, E., Local regularity results for value functions of tug-of-war with noise and running payoff, Adv. Calc. Var., 9, 1, 1-17 (2016) · Zbl 1331.35069
[36] Siltakoski, J., Equivalence of viscosity and weak solutions for the normalized \(p(x)\)-Laplacian, Calc. Var. Partial Differ. Equ., 57, 4, 95-114 (2018) · Zbl 1397.35116
[37] Wang, L., Compactness methods for certain degenerate elliptic equations, J. Differ. Equ., 107, 2, 341-350 (1994) · Zbl 0792.35067
[38] Wang, Y., Small perturbation solutions for parabolic equations, Indiana Univ. Math. J., 62, 2, 671-697 (2013) · Zbl 1292.35088
[39] Wiegner, M., On \(C^\alpha \)-regularity of the gradient of solutions of degenerate parabolic systems, Ann. Mat. Pura Appl., 145, 4, 385-405 (1986) · Zbl 0642.35046
[40] Zhang, C.; Zhou, S., Hölder regularity for gradients of solutions of the strong \(p(x)\)-Laplacian, J. Math. Anal. Appl., 389, 1066-1077 (2012) · Zbl 1234.35122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.