×

On a generalized volume-filling chemotaxis system with nonlinear signal production. (English) Zbl 1497.35070

The article considers a generalization of the parabolic-elliptic chemotaxis system \[ \begin{cases} u_t = \nabla \cdot((1+u)^{-m}\nabla u) - \nabla \cdot(u(1+u)^{q-1}\nabla v)\\ 0 = \Delta v + (1+u)^{\kappa} - \frac1{|\Omega|}\int_\Omega (1+u)^{\kappa} \end{cases} \] in smooth bounded domains \(\Omega\subset \mathbb{R}^n\) and under homogeneous Neumann boundary conditions.
It is shown that solutions emanating from nonnegative \(C^1\) initial data are global and bounded if \[ m+\kappa+q < \frac{n+2}{n}, \] whereas if \(\Omega=B_R\) and \[ \kappa+q>\frac{n+2}{n}\quad (m\ge 0) \quad \text{ or } \quad m+\kappa+q > \frac{n+2}{n} \quad (m<0), \] then radially symmetric initial data leading to finite-time blow-up can be found.
The blow-up proof is based on a study of the behaviour of \[ \Phi(t)=\int_0^{s_0} s^{-\alpha} (s_0-s) w(s,t) ds \] for \[ w(s,t)= n \int_0^{s^{\frac{1}{n}}} \rho^{n-1} u(\rho,t) d\rho \] in the tradition of W. Jäger and S. Luckhaus [Trans. Am. Math. Soc. 329, No. 2, 819–824 (1992; Zbl 0746.35002)] and M. Winkler [Z. Angew. Math. Phys. 69, No. 2, Paper No. 40, 25 p. (2018; Zbl 1395.35048)].

MSC:

35B44 Blow-up in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Alikakos, ND, \(L^p\) bounds of solutions of reaction-diffusion equations, Commun. Partial Differ. Equ., 4, 827-868 (1979) · Zbl 0421.35009 · doi:10.1080/03605307908820113
[2] Biler, P., Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8, 715-743 (1998) · Zbl 0913.35021
[3] Chaplain, MAJ; Lolas, G., Mathematical modelling of cancer invasion of tissue: the role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15, 1685-1734 (2005) · Zbl 1094.92039 · doi:10.1142/S0218202505000947
[4] Cieślak, T.; Stinner, C., Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differ. Equ., 252, 5832-5851 (2012) · Zbl 1252.35087 · doi:10.1016/j.jde.2012.01.045
[5] Cieślak, T.; Stinner, C., Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta. Appl. Math., 129, 135-146 (2014) · Zbl 1295.35123 · doi:10.1007/s10440-013-9832-5
[6] Cieślak, T.; Stinner, C., New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differ. Equ., 258, 2080-2113 (2015) · Zbl 1331.35041 · doi:10.1016/j.jde.2014.12.004
[7] Cieślak, T.; Winkler, M., Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21, 1057-1076 (2008) · Zbl 1136.92006 · doi:10.1088/0951-7715/21/5/009
[8] Herrero, M.; Velázquez, J., A blow-up mechanism for a chemotaxis model, Ann. Scuola. Norm. Sup. Pisa. Cl. Sci., 24, 633-683 (1997) · Zbl 0904.35037
[9] Hillen, T.; Painter, K., Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26, 280-301 (2001) · Zbl 0998.92006 · doi:10.1006/aama.2001.0721
[10] Horstmann, D.; Wang, G., Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12, 159-177 (2001) · Zbl 1017.92006 · doi:10.1017/S0956792501004363
[11] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 52-107 (2005) · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[12] Ishida, S.; Seki, K.; Yokota, T., Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differ. Equ., 256, 2993-3010 (2014) · Zbl 1295.35252 · doi:10.1016/j.jde.2014.01.028
[13] Jäger, W.; Luckhaus, S., On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Am. Math. Soc., 329, 819-824 (1992) · Zbl 0746.35002 · doi:10.1090/S0002-9947-1992-1046835-6
[14] Keller, EF; Segel, LA, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[15] Lankeit, J., Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. S, 13, 233-255 (2020) · Zbl 1439.92042
[16] Li, Y., Finite-time blow-up in quasilinear parabolic-elliptic chemotaxis system with nonlinear signal production, J. Math. Anal. Appl., 480 (2019) · Zbl 1429.35035 · doi:10.1016/j.jmaa.2019.123376
[17] Nagai, T., Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5, 581-601 (1995) · Zbl 0843.92007
[18] Nagai, T.; Senba, T.; Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40, 411-433 (1997) · Zbl 0901.35104
[19] Osaki, K.; Yagi, A., Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44, 441-469 (2001) · Zbl 1145.37337
[20] Painter, KJ; Hillen, T., Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10, 501-543 (2002) · Zbl 1057.92013
[21] Painter, KJ; Maini, PK; Othmer, HG, Complex spatial patterns in a hybrid chemotaxis reaction-diffusion model, J. Math. Biol., 41, 285-314 (2000) · Zbl 0969.92003 · doi:10.1007/s002850000035
[22] Senba, T.; Suzuki, T., Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Adv. Differ. Equ., 6, 21-50 (2001) · Zbl 0999.92005
[23] Senba, T.; Suzuki, T., Weak solutions to a parabolic-elliptic system of chemotaxis, J. Funct. Anal., 191, 17-51 (2002) · Zbl 1005.35026 · doi:10.1006/jfan.2001.3802
[24] Shigesada, N.; Kawasaki, K.; Teramoto, E., Spatial segregation of interacting species, J. Theor. Biol., 79, 83-99 (1979) · doi:10.1016/0022-5193(79)90258-3
[25] Tanaka, Y.; Yokota, T., Blow-up in a parabolic-elliptic Keller-Segel system with density-dependent sublinear sensitivity and logistic source, Math. Methods Appl. Sci., 2020, 1-25 (2020) · Zbl 1452.35049
[26] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252, 692-715 (2012) · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[27] Tello, JI; Winkler, M., A chemotaxis system with logistic source, Commun. Partial Differ. Equ., 32, 6, 849-877 (2007) · Zbl 1121.37068 · doi:10.1080/03605300701319003
[28] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures. Appl., 100, 748-767 (2013) · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
[29] Winkler, M., How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases, Math. Ann., 373, 1237-1282 (2019) · Zbl 1416.35049 · doi:10.1007/s00208-018-1722-8
[30] Winkler, M., A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31, 2031-2056 (2018) · Zbl 1391.35240 · doi:10.1088/1361-6544/aaaa0e
[31] Winkler, M., Does a ‘volume-filling effect‘ always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33, 12-24 (2010) · Zbl 1182.35220 · doi:10.1002/mma.1146
[32] Winkler, M., Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities, J. Differ. Equ., 266, 8034-8066 (2019) · Zbl 1415.35052 · doi:10.1016/j.jde.2018.12.019
[33] Winkler, M., Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math. Phys., 69, 40 (2018) · Zbl 1395.35048 · doi:10.1007/s00033-018-0935-8
[34] Winkler, M., Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384, 261-272 (2011) · Zbl 1241.35028 · doi:10.1016/j.jmaa.2011.05.057
[35] Winkler, M.; Djie, KC, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72, 1044-1064 (2010) · Zbl 1183.92012 · doi:10.1016/j.na.2009.07.045
[36] Woodward, DE; Tyson, R.; Myerscough, MR; Murray, JD; Budrene, EO; Berg, HC, Spatiotemporal patterns generated by Salmonella typhimurium, Biophys. J., 68, 2181-2189 (1995) · doi:10.1016/S0006-3495(95)80400-5
[37] Zheng, P.; Mu, C.; Hu, X., Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source, Discrete Contin. Dyn. Syst. A, 35, 2299-2323 (2015) · Zbl 1307.35067 · doi:10.3934/dcds.2015.35.2299
[38] Zheng, P.; Mu, C.; Hu, X.; Tian, Y., Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, J. Math. Anal. Appl., 424, 509-522 (2015) · Zbl 1307.35069 · doi:10.1016/j.jmaa.2014.11.031
[39] Zheng, P.; Willie, R.; Mu, C., Global boundedness and stabilization in a two competing species chemotaxis-fluid system with two chemicals, J. Dyn. Differ. Equ., 32, 1371-1399 (2020) · Zbl 1446.35237 · doi:10.1007/s10884-019-09797-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.