×

Classifying right-angled Hecke \(\mathrm{C}^\ast\)-algebras via \(K\)-theoretic invariants. (English) Zbl 1497.19003

This article computes the \(K\)-theory, traces and the trace pairing for Hecke \(C^*\)-algebras of right-angled Coxeter systems. In particular, it is shown that \(K_0\) is the free Abelian group generated by specific projections coming from cliques in the commutation graph and that \(K_1\) vanishes. It is remarkable that the method used here also gives explicit generators for \(K_0\). A key point is a recent computation of the \(KK\)-theory of amalgamated free products by P. Fima and E. Germain [Adv. Math. 369, Article ID 107174, 34 p. (2020; Zbl 1455.46074)]. The \(C^*\)-algebras in question are written as such amalgamated free products for certain Coxeter subsystems. The general theory of amalgamated free products also implies that the Hecke \(C^*\)-algebras for different deformation parameters are all \(KK\)-equivalent and satisfy the UCT (Corollary 3.3). The pairing of the traces with \(K_0\) is studied to explore to what extent the unordered Elliott invariant is able to distinguish Hecke \(C^*\)-algebras for different deformation parameter. The outcome is that it can distinguish some deformation parameters, but cannot distinguish all nonisomorphic ones.

MSC:

19K99 \(K\)-theory and operator algebras
46L80 \(K\)-theory and operator algebras (including cyclic theory)
20C08 Hecke algebras and their representations
46L09 Free products of \(C^*\)-algebras
19K35 Kasparov theory (\(KK\)-theory)

Citations:

Zbl 1455.46074

References:

[1] Blackadar, B., K-Theory for Operator Algebras, Mathematical Sciences Research Institute Publications, vol. 5 (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0913.46054
[2] Boca, F.; Rădulescu, F., Singularity of radial subalgebras in II_1 factors associated with free products of groups, J. Funct. Anal., 103, 1, 138-159 (1992) · Zbl 0756.46028
[3] Bożejko, M.; Januszkiewicz, T.; Spatzier, R. J., Infinite Coxeter groups do not have Kazhdan’s property, J. Oper. Theory, 19, 1, 63-67 (1988) · Zbl 0662.20040
[4] Breuillard, E.; Kalantar, M.; Kennedy, M.; Ozawa, N., \( \operatorname{C}^\ast \)-simplicity and the unique trace property for discrete groups, Publ. Math. Inst. Hautes Études Sci., 126, 1, 35-71 (2017) · Zbl 1391.46071
[5] Cabrer, L. M.; Mundici, D., Classifying orbits of the affine group over the integers, Ergod. Theory Dyn. Syst., 37, 2, 440-453 (2017) · Zbl 1417.37114
[6] Caprace, P.-E.; Lécureux, J., Combinatorial and group-theoretic compactifications of buildings, Ann. Inst. Fourier, 61, 2, 619-672 (2011) · Zbl 1266.51016
[7] J. Carrión, J. Gabe, C. Schafhauser, A. Tikuisis, S. White, Classification of^⁎-homomorphims I: simple nuclear \(\operatorname{C}^\ast \)-algebras, 2021, in preparation.
[8] Caspers, M., Absence of Cartan subalgebras for right-angled Hecke von Neumann algebras, Anal. PDE, 13, 1, 1-28 (2020) · Zbl 1447.46047
[9] Caspers, M.; Fima, P., Graph products of operator algebras, J. Noncommut. Geom., 11, 1, 367-411 (2017) · Zbl 1373.46055
[10] Caspers, M.; Klisse, M.; Larsen, N., Graph product Khintchine inequalities and Hecke \(\operatorname{C}^\ast \)-algebras: Haagerup inequalities, (non)simplicity, nuclearity and exactness, J. Funct. Anal., 280, 108795 (2021) · Zbl 1451.05199
[11] Caspers, M.; Skalski, A.; Wasilewski, M., On MASAs in q-deformed von Neumann algebras, Pac. J. Math., 302, 1, 1-21 (2019) · Zbl 1473.46065
[12] Chifan, I.; Sinclair, T., On the structural theory of II_1 factors of negatively curved groups, Ann. Sci. Éc. Norm. Supér. (4), 46, 1, 1-34 (2013) · Zbl 1290.46053
[13] Cuntz, J., The internal structure of simple \(\operatorname{C}^\ast \)-algebras, (Operator Algebras and Applications, Part I. Operator Algebras and Applications, Part I, Kingston, Ont., 1980. Operator Algebras and Applications, Part I. Operator Algebras and Applications, Part I, Kingston, Ont., 1980, Proceedings of Symposia in Pure Mathematics, vol. 38 (1982), American Mathematical Society: American Mathematical Society Providence, RI), 85-115 · Zbl 0502.46039
[14] Cuntz, J., The K-groups for free products of \(\operatorname{C}^\ast \)-algebras, (Operator Algebras and Applications, Part I. Operator Algebras and Applications, Part I, Kingston, Ont., 1980. Operator Algebras and Applications, Part I. Operator Algebras and Applications, Part I, Kingston, Ont., 1980, Proceedings of Symposia in Pure Mathematics, vol. 38 (1982), American Mathematical Society: American Mathematical Society Providence, RI), 81-84 · Zbl 0502.46050
[15] Cuntz, J., K-theoretic amenability for discrete groups, J. Reine Angew. Math., 344, 180-195 (1983) · Zbl 0511.46066
[16] Davis, M. W., The Geometry and Topology of Coxeter Groups, London Mathematical Society Monographs Series, vol. 32 (2008), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1142.20020
[17] Davis, M. W.; Dymara, J.; Januszkiewicz, T.; Okun, B., Weighted \(\operatorname{L}^2\)-cohomology of Coxeter groups, Geom. Topol., 11, 47-138 (2007) · Zbl 1173.20029
[18] Dykema, K. J., Free products of hyperfinite von Neumann algebras and free dimension, Duke Math. J., 69, 1, 97-119 (1993) · Zbl 0784.46044
[19] Dykema, K. J., Simplicity and the stable rank of some free product \(\operatorname{C}^\ast \)-algebras, Trans. Am. Math. Soc., 351, 1, 1-40 (1999) · Zbl 0908.46037
[20] Dykema, K. J.; Rørdam, M., Projections in free product \(\operatorname{C}^\ast \)-algebras, Geom. Funct. Anal., 8, 1, 1-16 (1998) · Zbl 0907.46045
[21] Eckhardt, C.; Raum, S., \( \operatorname{C}^\ast \)-superrigidity of 2-step nilpotent groups, Adv. Math., 338, 175-195 (2018) · Zbl 1405.46045
[22] Eilers, S.; Li, X.; Ruiz, E., The isomorphism problem for semigroup \(\operatorname{C}^\ast \)-algebras of right-angled Artin monoids, Doc. Math., 21, 309-343 (2016) · Zbl 1351.46051
[23] Elias, B.; Williamson, G., The Hodge theory of Soergel bimodules, Ann. Math. (2), 180, 3, 1089-1136 (2014) · Zbl 1326.20005
[24] Elliott, G. A., On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra, 38, 1, 29-44 (1976) · Zbl 0323.46063
[25] Fima, P.; Germain, E., The KK-theory of amalgamated free products, Adv. Math., 369, Article 107174 pp. (2020), 35 pp. · Zbl 1455.46074
[26] Garncarek, Ł., Factoriality of Hecke-von Neumann algebras of right-angled Coxeter groups, J. Funct. Anal., 270, 3, 1202-1219 (2016) · Zbl 1397.20012
[27] Germain, E., KK-theory of reduced free-product \(\operatorname{C}^\ast \)-algebras, Duke Math. J., 82, 3, 707-723 (1996) · Zbl 0863.46046
[28] Germain, E., KK-theory of the full free product of unital \(\operatorname{C}^\ast \)-algebras, J. Reine Angew. Math., 485, 1-10 (1997) · Zbl 0865.19005
[29] G. Gong, H. Lin, Z. Niu, Classification of finite simple amenable \(\mathcal{Z} \)-stable \(\operatorname{C}^\ast \)-algebras, Preprint, 2015.
[30] Green, E. R., Graph products (1990), University of Leeds, PhD thesis
[31] Higson, N.; Kasparov, G. G., Operator K-theory for groups which act properly and isometrically on Hilbert space, Electron. Res. Announc. Am. Math. Soc., 3, 131-142 (1997) · Zbl 0888.46046
[32] Humphreys, J. E., Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, vol. 29 (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0725.20028
[33] Kalantar, M.; Kennedy, M., Boundaries of reduced \(\operatorname{C}^\ast \)-algebras of discrete groups, J. Reine Angew. Math., 727, 247-267 (2017) · Zbl 1371.46044
[34] Kazhdan, D.; Lusztig, G., Representations of Coxeter groups and Hecke algebras, Invent. Math., 53, 2, 165-184 (1979) · Zbl 0499.20035
[35] Klisse, M., Topological boundaries of connected graphs and Coxeter groups, J. Oper. Theory (2020), in press
[36] Klisse, M., Simplicity of right-angled Hecke \(\operatorname{C}^\ast \)-algebras, Int. Math. Res. Not., rnac036, 1-26 (2022)
[37] Lam, T.; Thomas, A., Infinite reduced words and the Tits boundary of a Coxeter group, Int. Math. Res. Not., 2015, 17, 7690-7733 (2015) · Zbl 1355.20029
[38] Meyer, R.; Nest, R., The Baum-Connes conjecture via localisation of categories, Topology, 45, 209-259 (2006) · Zbl 1092.19004
[39] Neeman, A., Triangulated Categories, Annals of Mathematics Studies, vol. 148 (2001), Princeton University Press: Princeton University Press Princeton, Oxford · Zbl 0974.18008
[40] Ozawa, N., Solid von Neumann algebras, Acta Math., 192, 1, 111-117 (2004) · Zbl 1072.46040
[41] Pimsner, M.; Voiculescu, D. V., K-groups of reduced crossed products by free groups, J. Oper. Theory, 8, 1, 131-156 (1982) · Zbl 0533.46045
[42] Powers, R. T., Simplicity of the \(\operatorname{C}^\ast \)-algebra associated with the free group on two generators, Duke Math. J., 42, 151-156 (1975) · Zbl 0342.46046
[43] Radcliffe, D. G., Rigidity of graph products of groups, Algebraic Geom. Topol., 3, 1079-1088 (2003) · Zbl 1053.20025
[44] Raum, S., \( \operatorname{C}^\ast \)-simplicity (after Breuillard, Haagerup, Kalantar, Kennedy and Ozawa), Astérisque, 422 (2020), Séminaire Bourbaki, exposé 1158 · Zbl 1480.46076
[45] S. Raum, A. Skalski, Factorial multiparameter Hecke von Neumann algebras and representations of groups acting on right-angled buildings, Preprint, 2020.
[46] Sánchez-García, R. J., Equivariant K-homology for some Coxeter groups, J. Lond. Math. Soc. (2), 75, 3, 773-790 (2007) · Zbl 1175.19004
[47] Skandalis, G., Une notion de nucléarité en K-théorie (d’après J. Cuntz), K-Theory, 1, 6, 549-573 (1988) · Zbl 0653.46065
[48] Solleveld, M., On the classification of irreducible representations of affine Hecke algebras with unequal parameters, Represent. Theory, 16, 1-87 (2012) · Zbl 1272.20003
[49] Solleveld, M., Topological K-theory of affine Hecke algebras, Ann. K-Theory, 3, 3, 395-460 (2018) · Zbl 1451.46061
[50] Tikuisis, A.; White, S.; Winter, W., Quasidiagonality of nuclear \(\operatorname{C}^\ast \)-algebras, Ann. Math. (2), 185, 229-284 (2017) · Zbl 1367.46044
[51] Tu, J.-L., La conjecture de Baum-Connes pour les feuilletages moyennables, K-Theory, 17, 3, 215-264 (1999) · Zbl 0939.19001
[52] Voiculescu, D. V., Symmetries of some reduced free product \(\operatorname{C}^\ast \)-algebras, (Operator Algebras and Their Connections with Topology and Ergodic Theory. Operator Algebras and Their Connections with Topology and Ergodic Theory, Buşteni/Rom., 1983. Operator Algebras and Their Connections with Topology and Ergodic Theory. Operator Algebras and Their Connections with Topology and Ergodic Theory, Buşteni/Rom., 1983, Lect. Notes Math., vol. 1132 (1985), Springer: Springer Berlin, Heidelberg, New York), 556-588 · Zbl 0618.46048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.