×

KK-theory of reduced free-product \(C^*\)-algebras. (English) Zbl 0863.46046

Let \(A_r\) denote the reduced free-product \(C^*\)-algebra of a set of \(K\)-nuclear \(C^*\)-algebras endowed with states, and let \(A\) be the full free-product \(C^*\)-algebra. One of the purposes of this paper is to get a candidate for the inverse in \(KK(A_r,A)\) of the canonical morphism from \(A\) to \(A_r\) and to show that this morphism always realizes a so named \(K\)-theoretical equivalence. The tools developed here allow to give a unified treatment and to extend to a larger set of \(C^*\)-algebras the computation of the \(KK\)-groups of full free-product \(C^*\)-algebras. To this purpose the notion of \(K\)-pointed \(C^*\)-algebra is introduced and the main properties of such \(C^*\)-algebras are considered.

MSC:

46L80 \(K\)-theory and operator algebras (including cyclic theory)
19K35 Kasparov theory (\(KK\)-theory)
Full Text: DOI

References:

[1] D. Avitzour, Free products of \(C^{\ast}\)-algebras , Trans. Amer. Math. Soc. 271 (1982), no. 2, 423-435. JSTOR: · Zbl 0513.46037 · doi:10.2307/1998890
[2] B. Blackadar, \(K\)-theory for operator algebras , Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. · Zbl 0597.46072
[3] J. Cuntz, \(K\)-theoretic amenability for discrete groups , J. Reine Angew. Math. 344 (1983), 180-195. · Zbl 0511.46066 · doi:10.1515/crll.1983.344.180
[4] J. Cuntz, The \(K\)-groups for free products of \(C^{\ast}\)-algebras , Operator algebras and applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 81-84. · Zbl 0502.46050
[5] E. Germain, \(KK\)-theory of reduced free product \(C^{\ast}\)- algebras with amalgamation over \(C(X)\) , Ph.D. dissertation, University of California at Berkeley, 1994.
[6] P. Julg and A. Valette, \(K\)-theoretic amenability for \({\mathrm SL}_{2}({\mathbf Q}_{p})\), and the action on the associated tree , J. Funct. Anal. 58 (1984), no. 2, 194-215. · Zbl 0559.46030 · doi:10.1016/0022-1236(84)90039-9
[7] G. Kasparov, Hilbert \(C^{\ast}\)-modules: theorems of Stinespring and Voiculescu , J. Operator Theory 4 (1980), no. 1, 133-150. · Zbl 0456.46059
[8] G. Kasparov, The operator \(K\)-functor and extensions of \(C^{\ast}\)-algebras , Mat. USSR Izv. 16 (1981), 513-572. · Zbl 0464.46054 · doi:10.1070/IM1981v016n03ABEH001320
[9] E. Lance, \(K\)-theory for certain group \(C^{\ast}\)-algebras , Acta Math. 151 (1983), no. 3-4, 209-230. · Zbl 0542.46031 · doi:10.1007/BF02393207
[10] K. McClanahan, \(K\)-theory for certain reduced free products of \(C^{\ast}\)-algebras , preprint, University of Mississippi, 1992. · Zbl 0867.46045
[11] K. McClanahan, \(KK\)-group of crossed products by grouplike sets acting on trees , preprint, University of Mississippi, 1993.
[12] J. Mingo, On the contractibility of the unitary group of the Hilbert space over a \(C^{\ast}\)-algebra , Integral Equations Operator Theory 5 (1982), no. 6, 888-891. · Zbl 0494.46064 · doi:10.1007/BF01694068
[13] M. Pimsner, \(KK\)-groups of crossed products by groups acting on trees , Invent. Math. 86 (1986), no. 3, 603-634. · Zbl 0638.46049 · doi:10.1007/BF01389271
[14] M. Pimsner and D. Voiculescu, \(K\)-groups of reduced crossed products by free groups , J. Operator Theory 8 (1982), no. 1, 131-156. · Zbl 0533.46045
[15] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized \(K\)-functor , Duke Math. J. 55 (1987), no. 2, 431-474. · Zbl 0644.46051 · doi:10.1215/S0012-7094-87-05524-4
[16] G. Skandalis, Une notion de nucléarité en \(K\)-théorie (d’après J. Cuntz) , \(K\)-Theory 1 (1988), no. 6, 549-573. · Zbl 0653.46065 · doi:10.1007/BF00533786
[17] G. Skandalis, Kasparov’s bivariant \(K\)-theory and applications , Exposition. Math. 9 (1991), no. 3, 193-250. · Zbl 0746.19008
[18] E. H. Spanier, Algebraic topology , Springer-Verlag, New York, 1981, corrected reprint. · Zbl 0477.55001
[19] D. Voiculescu, A non-commutative Weyl-von Neumann theorem , Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97-113. · Zbl 0335.46039
[20] D. Voiculescu, Symmetries of some reduced free product \(C^ \ast\)-algebras , Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983), Lecture Notes in Math., vol. 1132, Springer, Berlin, 1985, pp. 556-588. · Zbl 0618.46048 · doi:10.1007/BFb0074909
[21] D. Voiculescu, The \(K\)-groups of the \(C^ *\)-algebra of a semicircular family , \(K\)-Theory 7 (1993), no. 1, 5-7. · Zbl 0786.46054 · doi:10.1007/BF00962789
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.