×

Remarks on the quadratic orthogonal bisectional curvature. (English) Zbl 1496.32034

Summary: We exhibit a curious link between the Quadratic Orthogonal Bisectional Curvature, combinatorics, and distance geometry. The Weitzenböck curvature operator, acting on real \((1, 1)\)-forms, is realized as the Dirichlet energy of a finite graph, weighted by a matrix of the curvature. These results also illuminate the difference in the nature of the Quadratic Orthogonal Bisectional Curvature and the Real Bisectional Curvature.

MSC:

32Q10 Positive curvature complex manifolds
32Q15 Kähler manifolds
05C22 Signed and weighted graphs

References:

[1] Bishop, RL; Goldberg, SI, On the second cohomology group of a Kaehler manifold of positive curvature, Proc. Amer. Math. Soc., 16, 119-122 (1965) · Zbl 0125.39403 · doi:10.1090/S0002-9939-1965-0172221-6
[2] Bochner, S., Vector fields and Ricci curvature, Bull. Amer. Math. Soc., 52, 776-797 (1946) · Zbl 0060.38301 · doi:10.1090/S0002-9904-1946-08647-4
[3] Bochner, S., Yano, K.: Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., (1953) · Zbl 0051.39402
[4] Broder, K.: The Schwarz Lemma in Kähler and non-Kähler geometry, arXiv:2109.06331
[5] Broder, K.: The Schwarz Lemma: An Odyssey, arXiv:2110.04989
[6] Broder, K.: On the nonnegativity of the Dirichlet energy of a weighted graph, Bull. of the Aust. Math. Soc., 1-5. doi:10.1017/S0004972721001015
[7] Broder, K.: An eigenvalue characterization of the dual EDM cone, Bull. of the Aust. Math. Soc., 1-3. doi:10.1017/S0004972721000915
[8] Broder, K., Tang, K.: On the weighted orthogonal Ricci curvature, arXiv:2111.00346
[9] Broder, K., Tang, K.: On the altered holomorphic curvatures of Hermitian manifolds, arXiv:2201.03666
[10] Chau, A.; Tam, L-F, Kähler C-spaces and quadratic bisectional curvature, J. Differential Geom., 94, 3, 409-468 (2013) · Zbl 1277.53072 · doi:10.4310/jdg/1370979334
[11] Chau, A.; Tam, L-F, On quadratic orthogonal bisectional curvature, J. Differential Geom., 92, 2, 187-200 (2012) · Zbl 1276.53075 · doi:10.4310/jdg/1352297805
[12] Dattorro, Jon, Equality relating Euclidean distance cone to positive semidefinite cone, Linear Algebra Appl., 428, 11-12, 2597-2600 (2008) · Zbl 1142.15014 · doi:10.1016/j.laa.2007.12.008
[13] Dattorro, Jon: Convex optimization \(\dagger\) Euclidean distance geometry. Available at the author’s webpage: https://ccrma.stanford.edu/ dattorro/ · Zbl 1142.15014
[14] Demailly, J-P; Peternell, T.; Schneider, M., Compact complex manifolds with numerically effective tangent bundles, J. Alg. Geom., 3, 295-345 (1994) · Zbl 0827.14027
[15] Gu, H.; Zhang, Z., An extension of Mok’s theorem on the generalized Frankel conjecture, Sci. China Math., 53, 1-12 (2010) · Zbl 1204.53058 · doi:10.1007/s11425-010-0013-y
[16] Heinz, TF, Topological Properties of Orthostochastic Matrices, Linear algebra and its applications, 20, 265-269 (1978) · Zbl 0376.15010 · doi:10.1016/0024-3795(78)90022-8
[17] Huang, S.; Tam, LF, U(n)-invariant Kähler metrics with nonnegative quadratic bisectional curvature, Asian J. Math., 19, 1, 1-16 (2015) · Zbl 1311.32009 · doi:10.4310/AJM.2015.v19.n1.a1
[18] Li, Q.; Wu, D.; Zheng, F., An example of compact Kähler manifold with non-negative quadratic bisectional curvature, Proc. Amer. Math. Soc., 141, 6, 2117-2126 (2013) · Zbl 1276.32018 · doi:10.1090/S0002-9939-2013-11596-0
[19] Mok, N., The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Diff. Geom., 27, 179-214 (1988) · Zbl 0642.53071
[20] Mori, S., Projective manifolds with ample tangent bundles, Ann. of Math. (2), 110, 3, 593-606 (1979) · Zbl 0423.14006 · doi:10.2307/1971241
[21] Ni, L.; Niu, Y., Gap theorem on Kähler manifolds with nonnegative orthogonal bisectional curvature, J. Reine Angew. Math., 763, 111-127 (2020) · Zbl 1444.32022 · doi:10.1515/crelle-2019-0002
[22] Niu, Y., A note on nonnegative quadratic orthogonal bisectional curvature, Proc. Amer. Math. Soc., 142, 11, 3975-3979 (2014) · Zbl 1415.53021 · doi:10.1090/S0002-9939-2014-12251-9
[23] Petersen, P.; Wink, M., New curvature conditions for the Bochner Technique, Inventiones Mathematicae, 224, 33-54 (2021) · Zbl 1462.53026 · doi:10.1007/s00222-020-01003-3
[24] Petersen, P., Wink, M.: The Bochner Technique and Weighted Curvatures, arXiv:2005.02604 · Zbl 1444.53032
[25] Petersen, P., Wink, M.: Estimation and Vanishing Results for Hodge numbers, arXiv:2009.14319 · Zbl 1484.53106
[26] Petersen, P., Wink, M.: Tachibana-type Theorems and special Holonomy, arXiv:2105.09290 · Zbl 1495.32060
[27] Schoenberg, IJ, Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe déspace distanciés vectoriellement applicable sur l’espace de Hilbert”, Annals of Mathematics, 36, 3, 724-732 (1935) · Zbl 0012.30703 · doi:10.2307/1968654
[28] Siu, Y-T; Yau, S-T, Compact Kähler manifolds of positive bisectional curvature, Invent. Math., 59, 2, 189-204 (1980) · Zbl 0442.53056 · doi:10.1007/BF01390043
[29] Tong, F., A new positivity condition for the curvature of Hermitian manifolds, Math. Z., 298, 3-4, 1175-1185 (2021) · Zbl 1471.53062 · doi:10.1007/s00209-020-02647-w
[30] Wu, D.; Yau, ST; Zheng, F., A degenerate Monge-Ampère equation and the boundary classes of Kähler cones, Math. Res. Lett., 16, 2, 365-374 (2009) · Zbl 1183.32018 · doi:10.4310/MRL.2009.v16.n2.a12
[31] Yang, X.; Zheng, F., On the real bisectional curvature for Hermitian manifolds, Trans. Amer. Math. Soc., 371, 4, 2703-2718 (2019) · Zbl 1417.32027 · doi:10.1090/tran/7445
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.