×

Gap theorem on Kähler manifolds with nonnegative orthogonal bisectional curvature. (English) Zbl 1444.32022

Authors’ abstract: In this paper we prove a gap theorem for Kähler manifolds with nonnegative orthogonal bisectional curvature and nonnegative Ricci curvature, which generalizes an earlier result of the first author [Invent. Math. 189, No. 3, 737–761 (2012; Zbl 1253.32009)]. We also prove a Liouville theorem for plurisubharmonic functions on such a manifold, which generalizes a previous result of the first author and L.-F. Tam [J. Differ. Geom. 64, No. 3, 457–524 (2003; Zbl 1088.32013)] and complements a recent result of G. Liu [Duke Math. J. 165, No. 15, 2899–2919 (2016; Zbl 1356.53070)].

MSC:

32Q15 Kähler manifolds
32U05 Plurisubharmonic functions and generalizations
32Q10 Positive curvature complex manifolds

References:

[1] J.-M. Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1, 277-204. · Zbl 0176.09703
[2] S. Brendle and R. M. Schoen, Classification of manifolds with weakly 1/4-pinched curvatures, Acta Math. 200 (2008), no. 1, 1-13. · Zbl 1157.53020
[3] B.-L. Chen and X.-P. Zhu, On complete noncompact Kähler manifolds with positive bisectional curvature, Math. Ann. 327 (2003), no. 1, 1-23. · Zbl 1034.32015
[4] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333-354. · Zbl 0312.53031
[5] S. I. Goldberg, Curvature and homology, Dover, Mineola 1998. · Zbl 0962.53001
[6] R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Math. 699, Springer, Berlin 1979. · Zbl 0414.53043
[7] R. E. Greene and H. Wu, Gap theorems for noncompact Riemannian manifolds, Duke Math. J. 49 (1982), no. 3, 731-756. · Zbl 0513.53045
[8] S. Huang and L.-F. Tam, U(n)-invariant Kähler metrics with nonnegative quadratic bisectional curvature, Asian J. Math. 19 (2015), no. 1, 1-16. · Zbl 1311.32009
[9] G. Liu, Three-circle theorem and dimension estimate for holomorphic functions on Kähler manifolds, Duke Math. J. 165 (2016), no. 15, 2899-2919. · Zbl 1356.53070
[10] N. Mok, Y. T. Siu and S. T. Yau, The Poincaré-Lelong equation on complete Kähler manifolds, Compos. Math. 44 (1981), no. 1-3, 183-218. · Zbl 0531.32007
[11] L. Ni, Vanishing theorems on complete Kähler manifolds and their applications, J. Differential Geom. 50 (1998), no. 1, 89-122. · Zbl 0963.32010
[12] L. Ni, A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature, J. Amer. Math. Soc. 17 (2004), no. 4, 909-946. · Zbl 1071.58020
[13] L. Ni, An optimal gap theorem, Invent. Math. 189 (2012), no. 3, 737-761. · Zbl 1253.32009
[14] L. Ni, Erratum to: An optimal gap theorem [mr2957306], Invent. Math. 196 (2014), no. 2, 511-514. · Zbl 1288.32034
[15] L. Ni and Y. Niu, Sharp differential estimates of Li-Yau-Hamilton-type for positive´(p,p)-forms on Kähler manifolds, Comm. Pure Appl. Math. 64 (2011), no. 7, 920-974. · Zbl 1219.58011
[16] L. Ni, Y. Shi and L.-F. Tam, Poisson equation, Poincaré-Lelong equation and curvature decay on complete Kähler manifolds, J. Differential Geom. 57 (2001), no. 2, 339-388. · Zbl 1046.53025
[17] L. Ni and L.-F. Tam, Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature, J. Differential Geom. 64 (2003), no. 3, 457-524. · Zbl 1088.32013
[18] L. Ni and L.-F. Tam, Kähler-Ricci flow and the Poincaré-Lelong equation, Comm. Anal. Geom. 12 (2004), no. 1-2, 111-141. · Zbl 1067.53054
[19] L. Ni and L.-F. Tam, Poincaré-Lelong equation via the Hodge-Laplace heat equation, Compos. Math. 149 (2013), no. 11, 1856-1870. · Zbl 1286.53048
[20] L. Ni and F. Zheng, Comparison and vanishing theorems for Kähler manifolds, Calc. Var. Partial Differential Equations 57 (2018), no. 6, Article ID 151. · Zbl 1407.53080
[21] Y. Niu, A note on nonnegative quadratic orthogonal bisectional curvature, Proc. Amer. Math. Soc. 142 (2014), no. 11, 3975-3979. · Zbl 1415.53021
[22] L.-F. Tam, A Kähler curvature operator has positive holomorphic sectional curvature, positive orthogonal bisectional curvature, but some negative bisectional curvature, private communication.
[23] B. Wilking, A Lie algebraic approach to Ricci flow invariant curvature conditions and Harnack inequalities, J. reine angew. Math. 679 (2013), 223-247. · Zbl 1380.53078
[24] H.-H. Wu and F. Zheng, Examples of positively curved complete Kähler manifolds, Geometry and analysis. No. 1, Adv. Lect. Math. (ALM) 17, International Press, Somerville (2011), 517-542. · Zbl 1262.53063
[25] B. Yang and F. Zheng, U(n)-invariant Kähler-Ricci flow with non-negative curvature, Comm. Anal. Geom. 21 (2013), no. 2, 251-294. · Zbl 1275.53064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.