×

On algebraicity of special values of symmetric 4-th and 6-th power \(L\)-functions for \(\operatorname{GL}(2)\). (English) Zbl 1496.11074

The algebraicity of special values has been a standing topic in the study of \(L\)-functions, both for the analytic reasons and for the arithmetic reasons. Many results have been obtained with fruitful applications, and even more have been conjectured; for example, P. Deligne [Proc. Symp. Pure Math. 33, No. 2, 313–346 (1979; Zbl 0449.10022)] describes how these special values are conjecturally related to certain geometric periods. In the case of symmetric power \(L\)-functions, A. Raghuram and F. Shahidi [Prog. Math. 258, 271–293 (2008; Zbl 1229.11080)] give a “simplistic” form of Deligne’s conjecture.
Conjecture. Let \(F / \mathbb{Q}\) be a totally real number field of degree \(d\) and with discriminant \(D_F\), let \(\mathfrak{c}\) be an integral ideal of \(F\), let \(\mathbf{k} \in (2 \mathbb{N})^d\), let \(\mathbf{f} \in \mathcal{S}_{\mathbf{k}}(\mathfrak{c}, 1)\) be a primitive cuspform, and let \(\pi = \pi(\mathbf{f})\) be the irreducible cuspidal automorphic representation of \(\mathrm{GL}_2(\mathbb{A}_F)\) associated to \(\mathbf{f}\) with trivial central character. Also, let \(r \geq 1\) and \(1 \leq m \leq \mathbf{k}^0 - 1\), where \[ \mathbf{k}^0 = \min\{k_1, \dots, k_d\} \] Further, let \(\chi\) be a finite order Hecke character of \(\mathbb{A}_F^{\times}\) such that \(\chi_v = (\operatorname{sgn})^{r+m}\) at every archimedean place \(v\) of \(F\). Then we have \[ \frac{L_{\mathrm{fin}}(m, \pi(\mathbf{f}), \operatorname{Sym}^{2r} \times \chi)} {(2 \pi i)^{\frac{(r+1)(r|\mathbf{k}|+d(2m-r))}{2}} |D_F|^{\frac{1}{2}} \mathfrak{g}(\chi)^{r+1} \langle \mathbf{f}, \mathbf{f}\rangle^{r(r+1)}} \in \overline{\mathbb{Q}} \qquad \qquad (*) \] where \(\mathfrak{g}(\chi)\) denotes the Gauss sum of \(\chi\).
The focus of the paper under review is the algebraicity of special values of symmetric 4-th and 6-th power \(L\)-functions of Hilbert cusp forms. More precisely, the author shows that
1.
if \(r = 2\) and \(\mathbf{k}^0 \geq 6\), then the algebraicity (*) holds for every \(\chi\) and every \(m\);
2.
if \(r = 3\) and \(\mathbf{k}^0 \geq 6\), then the algebraicity (*) holds for every \(\chi\) and every \(m\) when \(F = \mathbb{Q}\), for every \(\chi\) and certain critical points \(m\) when \(F \cap \mathbb{Q}(\zeta_5) = \mathbb{Q}\), and for \(m = 1\) and \(\chi = 1\) when \(F\) is a general totally real field.
The main approach of the proof is to use symmetric power liftings of \(\mathrm{GL}(2)\) to connect the symmetric power \(L\)-function with the standard \(L\)-functions of these liftings and their twists, so that the expected algebraicity can be deduced from the previously established results of these standard \(L\)-functions with certain periods.
The author also considers the lifts introduced by D. Ramakrishnan and F. Shahidi [Math. Res. Lett. 14, No. 2, 315–332 (2007; Zbl 1132.11023)] with \(F = \mathbb{Q}\) and by R. Harron and A. Jorza [Am. J. Math. 139, No. 6, 1605–1647 (2017; Zbl 1425.11089)] in general. As a consequence of his algebraicity result, the author establishes a period relation for the Ramakrishnan-Shahidi lifts, proving a conjecture of T. Ibukiyama and H. Katsurada [J. Math. Soc. Japan 66, No. 1, 139–160 (2014; Zbl 1291.11087); Conjecture 3.3] over totally real fields.
This paper is well written. In particular, the author carefully explains the reasons for the introduction of those restrictions in his results, helping the audience clearly understand the obstacles and the opportunities therein.

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
11F11 Holomorphic modular forms of integral weight
Full Text: DOI

References:

[1] Arthur, J.; Clozel, L., Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula. Annals of Mathematics Studies, xiv+230 (1989), Princeton: Princeton University Press, Princeton · Zbl 0682.10022
[2] Blasius, D., Hilbert Modular Forms and the Ramanujan Conjecture. Noncommutative Geometry and Number Theory, Aspects Mathematics, 35-56 (2006), Wiesbaden: Vieweg, Wiesbaden · Zbl 1183.11023 · doi:10.1007/978-3-8348-0352-8_2
[3] Böcherer, S.; Schmidt, C-G, \(p\)-adic measures attached to Siegel modular forms, Ann. Inst. Fourier (Grenoble), 50, 5, 1375-1443 (2000) · Zbl 0962.11023 · doi:10.5802/aif.1796
[4] Chen, S.-Y.: On Deligne’s conjecture for symmetric fourth L-functions of Hilbert modular forms. arXiv:2101.07507 (preprint)
[5] Clozel, L.; Harris, M.; Taylor, R., Automorphy for some \(l\)-adic lifts of automorphic mod \(l\) Galois representations. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras, Publ. Math. Inst. Hautes Études Sci., 108, 1-181 (2008) · Zbl 1169.11020 · doi:10.1007/s10240-008-0016-1
[6] Clozel, L.; Thorne, J., Level raising and symmetric power functoriality, II, Ann. Math. (2), 181, 1, 303-359 (2015) · Zbl 1339.11060 · doi:10.4007/annals.2015.181.1.5
[7] Clozel, L.; Thorne, J., Level-raising and symmetric power functoriality, III, Duke Math. J., 166, 2, 325-402 (2017) · Zbl 1372.11054 · doi:10.1215/00127094-3714971
[8] Deligne, P.: Valeurs de fonctions \(L\) et périodes d’intégrales, With an appendix by N. Koblitz and A. Ogus, Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., : Part 2, 313-346, p. 1979. Math. Soc., Providence (1977) · Zbl 0449.10022
[9] Garrett, PB, Decomposition of Eisenstein series: Rankin triple products, Ann. Math. (2), 125, 2, 209-235 (1987) · Zbl 0625.10020 · doi:10.2307/1971310
[10] Garrett, P.; Harris, M., Special values of triple product L-functions, Am. J. Math., 115, 1, 161-240 (1993) · Zbl 0776.11027 · doi:10.2307/2374726
[11] Grobner, H., Lin, J.: Special values of \(L\)-functions and the refined Gan-Gross-Prasad conjecture. Am. J. Math. arXiv:1705.07701 · Zbl 1492.11099
[12] Grobner, H.; Raghuram, A., On the arithmetic of Shalika models and the critical values of L-functions for \({\rm GL}_{2n}\). With an appendix by Wee Teck Gan, Am. J. Math., 136, 3, 675-728 (2014) · Zbl 1297.11048 · doi:10.1353/ajm.2014.0021
[13] Gelbart, S.; Jacquet, H., A relation between automorphic representations of \({\rm GL} (2)\) and \({\rm GL} (3)\)., Ann. Sci. École Norm. Sup. (4), 11, 4, 471-542 (1978) · Zbl 0406.10022 · doi:10.24033/asens.1355
[14] Harris, M., Special values of zeta functions attached to Siegel modular forms, Ann. Sci. École Norm. Sup. (4), 14, 1, 77-120 (1981) · Zbl 0465.10022 · doi:10.24033/asens.1398
[15] Harron, R.; Jorza, A., On symmetric power \(\cal{L} \)-invariants of Iwahori level Hilbert modular forms, Am. J. Math., 139, 6, 1605-1647 (2017) · Zbl 1425.11089 · doi:10.1353/ajm.2017.0040
[16] Ibukiyama, T.; Katsurada, H., Exact critical values of the symmetric fourth \(L\)-functions and vector valued Siegel modular forms, J. Math. Soc. Jpn., 66, 1, 139-160 (2014) · Zbl 1291.11087 · doi:10.2969/jmsj/06610139
[17] Im, J., Special values of Dirichlet series attached to Hilbert modular forms, Am. J. Math., 113, 6, 975-1017 (1991) · Zbl 0756.11014 · doi:10.2307/2374898
[18] Jacquet, H.; Langlands, R., Automorphic Forms on GL(2). Lecture Notes in Mathematics, 548 (1970), Berlin: Springer, Berlin · Zbl 0236.12010
[19] Kim, H., Functoriality for the exterior square of \({\rm GL}_4\) and the symmetric fourth of \({\rm GL}_2\), with appendix 1 by D. Ramakrishnan and appendix 2 by H. H. Kim and P. Sarnak, J. Am. Math. Soc., 16, 139-183 (2003) · Zbl 1018.11024 · doi:10.1090/S0894-0347-02-00410-1
[20] Kim, H.; Shahidi, F., Holomorphy of Rankin triple \(L\)-functions; special values and root numbers for symmetric cube \(L\)-functions. Proceedings of the conference on \(p\)-adic aspects of the theory of automorphic representations, Israel J. Math., 120 part B, 449-466 (2000) · Zbl 1005.11026 · doi:10.1007/BF02834847
[21] Kim, H.; Shahidi, F., Functorial products for \({\rm GL}_2 \times{\rm GL}_3\) and the symmetric cube for \({\rm GL}_2\). With an appendix by Colin J. Bushnell and Guy Henniart, Ann. Math.(2), 155, 3, 837-893 (2002) · Zbl 1040.11036 · doi:10.2307/3062134
[22] Kozima, N., On special values of standard \(L\)-functions attached to vector valued Siegel modular forms, Kodai Math. J., 23, 2, 255-265 (2000) · Zbl 1184.11018 · doi:10.2996/kmj/1138044215
[23] Labesse, J-P; Schwermer, J., On liftings and cusp cohomology of arithmetic groups, Invent. Math., 83, 383-401 (1986) · Zbl 0581.10013 · doi:10.1007/BF01388968
[24] Lin, J., Period relations for automorphic induction and applications, I, C. R. Math. Acad. Sci. Paris, 353, 2, 95-100 (2015) · Zbl 1305.11040 · doi:10.1016/j.crma.2014.10.016
[25] Liu, Z.: The doubling Archimedean zeta integrals for \(p\)-adic interpolation. Math. Res. Lett. (preprint) · Zbl 1469.11460
[26] Morimoto, K., On tensor product \(L\)-functions for quaternion unitary groups and \({\rm GL} (2)\) over totally real number fields: mixed weight cases, Adv. Math., 337, 317-362 (2018) · Zbl 1422.11118 · doi:10.1016/j.aim.2018.08.009
[27] Newton, J., Thorne, J.: Symmetric power functoriality for holomorphic modular forms, II. preprint, arXiv:2009.07180
[28] Orloff, T., Special values and mixed weight triple products (with an appendix by Don Blasius), Invent. Math., 90, 1, 169-188 (1987) · Zbl 0625.10021 · doi:10.1007/BF01389036
[29] Pitale, A., Saha, A., Schmidt, R.: On the standard \(L\)-function for \({\rm GSp}_{2n} \times{\rm GL}_1\) and algebraicity of symmetric fourth L-values for \({\rm GL}_2\). arXiv:1803.06227 (preprint)
[30] Raghuram, A., On the special values of certain Rankin-Selberg L-functions and applications to odd symmetric power L-functions of modular forms, Int. Math. Res. Not., 2, 334-372 (2010) · Zbl 1221.11128 · doi:10.1093/imrn/rnp127
[31] Raghuram, A., Critical values of Rankin-Selberg \(L\)-functions for \({\rm GL}_n\times{\rm GL}_{n-1}\) and the symmetric cube \(L\)-functions for \({\rm GL}_2\), Forum Math., 28, 3, 457-489 (2016) · Zbl 1417.11082 · doi:10.1515/forum-2014-0043
[32] Raghuram, A.; Shahidi, F., Functoriality and special values of \(L\)-functions. Eisenstein series and applications, Progr. Math., 258, 271-293 (2008) · Zbl 1229.11080 · doi:10.1007/978-0-8176-4639-4_10
[33] Raghuram, A.; Tanabe, N., Notes on the arithmetic of Hilbert modular forms, J. Ramanujan Math. Soc., 26, 261-319 (2011) · Zbl 1272.11069
[34] Ramakrishnan, D.; Shahidi, F., Siegel modular forms of genus 2 attached to elliptic curves, Math. Res. Lett., 14, 2, 315-332 (2007) · Zbl 1132.11023 · doi:10.4310/MRL.2007.v14.n2.a13
[35] Satoh, T., Some remarks on triple \(L\)-functions, Math. Ann., 276, 4, 687-698 (1987) · Zbl 0607.10020 · doi:10.1007/BF01456996
[36] Shahidi, F., On certain \(L\)-functions, Am. J. Math., 103, 2, 297-355 (1981) · Zbl 0467.12013 · doi:10.2307/2374219
[37] Shahidi, F., On non-vanishing of twisted symmetric and exterior square \(L\)-functions for \({\rm GL} (n)\). Olga Taussky-Todd: in memoriam, Pac. J. Math. Spec. Issue, 20, 311-322 (1997) · doi:10.2140/pjm.1997.181.311
[38] Shalika, J.; Tanaka, S., On an explicit construction of a certain class of automorphic forms, Am. J. Math., 91, 1049-1076 (1969) · Zbl 0217.43302 · doi:10.2307/2373316
[39] Shimura, G., The special values of the zeta functions associated with cusp forms, Commun. Pure Appl. Math., 29, 6, 783-804 (1976) · Zbl 0348.10015 · doi:10.1002/cpa.3160290618
[40] Shimura, G., The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., 45, 3, 637-679 (1978) · Zbl 0394.10015 · doi:10.1215/S0012-7094-78-04529-5
[41] Shimura, G., Arithmeticity in the Theory of Automorphic Forms. Mathematical Surveys and Monographs (2000), Providence: American Mathematical Society, Providence · Zbl 0967.11001
[42] Sturm, J., Special values of zeta functions, and Eisenstein series of half integral weight, Am. J. Math., 102, 2, 219-240 (1980) · Zbl 0433.10015 · doi:10.2307/2374237
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.