×

Some remarks on triple L-functions. (English) Zbl 0607.10020

The author extends P. B. Garrett’s results [Decomposition of Eisenstein series: Rankin triple products, Ann. Math., II. Ser. (to appear)] relating triple L-function in two aspects. Let \(S_ k(\Gamma _ 1)\) be the space of cusp forms of weight k and of degree 1. For Siegel modular forms \(f_ 1,...,f_ m\) (of various degree), let \({\mathbb{Q}}(f_ 1,...,f_ m)\) be the field generated by all the Fourier coefficients of \(f_ 1,...,f_ m\) over \({\mathbb{Q}}\). If \(f\in S_ k(\Gamma _ 1)\) is a normalized Hecke eigenform and p is a prime, we define semi-simple \(M_ p(f)\in GL(2, {\mathbb{C}})\) (up to the conjugacy class) by \(\det (I_ 2-tM_ p(f))=1-a(p,f)t+p^{k-1} t^ 2.\) For normalized eigen cusp forms f, g and h, define the ’triple L-function’ L(s;f,g,h) by \[ L(s;f,g,h)=\prod _{p: prime}\det (I_ s-p^{-s} M_ p(f)\otimes M_ p(g)\otimes M_ p(h))^{-1}\quad. \] If \(f\in S_{k+r}(\Gamma _ 1)\), we denote by \([f]_ r\) the degree two Klingen type Eisenstein series attached to f of type \(\det ^ k\otimes Sym^ r St\), where St is the standard representation of GL(2, \({\mathbb{C}}).\)
Then, the author obtains the following two results. Theorem 1. Let f, g and h be normalized eigen cusp forms of degree one and of weight \(\nu\) (f), \(\nu\) (g) and \(\nu\) (h), respectively, satisfying \(\nu\) (f)\(\geq \nu (g)\geq \nu (h)\). Put \[ \tilde L(s;f,g,h)=\Gamma _ c(s) \Gamma _ c(s- \nu (f)+1) \Gamma _ c(s-\nu (g)+1) \Gamma _ c(s-\nu (h)+1) L(s;f,g,h) \] where \(\Gamma _ c(s)=2(2\pi)^{-s} \Gamma (s)\). Then \~L(s;f,g,h) meromorphically extends to the whole s-plane and satisfies the functional equation \[ \tilde L(s;f,g,h)=-\tilde L(\nu (f)+\nu (g)+\nu (h)-2- s;f,g,h)\quad. \] Moreover, if \(\nu (g)+\nu (h)-\nu (f)>0\) and \(L((\nu (f)+\nu (g)+\nu (h))/2-1;f,g,h)\) is finite, then \[ L((\nu (f)+\nu (g)+\nu (h))/2-1;f,g,h)=0\quad, \] and if \(\nu (g)+\nu (h)-\nu (f)>4\), then \[ \frac{\pi ^{5+\nu (f)-3\nu (g)-3\nu (h)} L(\nu (g)+\nu (h)- 2;f,g,h)}{<f,f>_{\nu (f)} <g,g>_{\nu (g)} <h,h>_{\nu (h)}}\in {\mathbb{Q}}([f]_{2\nu (f)-\nu (g)-\nu (h)}, g, h) \] where \(<, >_ k\) is the Petersson inner product for weight k.
Theorem 2. Let f, g and h be normalized cusp forms of weight k. For an integer m with \(0\leq m\leq k/2-2\), we have \[ \pi ^{5-5k+4m} L(2k-2- m;f,g,h)/(<f,f>_ k <g,g>_ k <h,h>_ k)\in {\mathbb{Q}}(f,g,h). \] Taking \(f=g=h\), one obtains special values of the third L-function of f. It is interesting to observe that triple L-functions and the third L-functions vanish at the center of their functional equation if the center is a critical point. In the proof of Theorem 1, affirmative support to the author’s conjecture [Math. Ann. 274, 335-352 (1986; Zbl 0571.10028)] is given.

MSC:

11F27 Theta series; Weil representation; theta correspondences
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols

References:

[1] Arakawa, T.: Vector valued Siegel’s modular forms of degree two and the associated AndrianovL-functions. Manuscripta Math.44, 155-185 (1983) · Zbl 0517.10024 · doi:10.1007/BF01166080
[2] Böcherer, S.: Über die Funktionalgleichung automorpherL-Funktionen zur Siegelschen Modulgruppe. J. Reine Angew. Math.362, 146-168 (1985) · Zbl 0565.10025 · doi:10.1515/crll.1985.362.146
[3] Deligne, P.: Valuers de fonctionsL et périodes d’intégrales. Proc. Sympos. Pure Math. AMS33, 313-346 (1979)
[4] Garrett, P.B.: Decomposition of Eisenstein series: Rankin triple products. Ann. Math. (to appear) · Zbl 0625.10020
[5] Harris, M.: Special values of zeta functions attached to Siegel modular forms. Ann. Sci. École Norm. Sup.14, 77-120 (1981) · Zbl 0465.10022
[6] Kalinin, V.L.: Eisenstein series on the symplectic group. Math. USSR Sb.32, 449-476 (1977) · Zbl 0397.10021 · doi:10.1070/SM1977v032n04ABEH002399
[7] Maass, H.: Siegel’s modular forms and Dirichlet series. Lect. Notes Math. 216. Berlin, Heidelberg, New York: Springer 1971 · Zbl 0224.10028
[8] Mizumoto, S.: Fourier coefficients of generalized Eisenstein series of degree two. I. Invent. Math.65, 115-135 (1981) · doi:10.1007/BF01389298
[9] Moreno, C.J., Shahidi, F.: TheL-functionL 3(s, ??) is entire. Invent. Math.79, 247-251 (1985) · Zbl 0558.10025 · doi:10.1007/BF01388972
[10] Ozeki, M., Washio, T.: Table of the Fourier coefficients of Eisenstein series of degree 3. Proc. Japan Acad.59A, 252-255 (1983) · Zbl 0522.10018
[11] Raghavan, S.: On an Eisenstein series of degree 3. J. Indian Math. Soc. (N.S.)39, 103-120 (1975) · Zbl 0412.10020
[12] Satoh, T.: Construction of certain vector valued Siegel modular forms of degree two. Proc. Japan Acad.61A, 225-227 (1985) · Zbl 0571.10027
[13] Satoh, T.: On certain vector valued Siegel modular forms of degree two. Math. Ann.274, 335-352 (1986) · Zbl 0571.10028 · doi:10.1007/BF01457078
[14] Shimura, G.: The special values of the zeta functions associated with cusp forms. Comm. Pure Appl. Math.29, 783-804 (1976) · Zbl 0348.10015 · doi:10.1002/cpa.3160290618
[15] Shimura, G.: On the derivatives of theta functions and modular forms. Duke Math. J.44, 365-387 (1977) · Zbl 0371.14023 · doi:10.1215/S0012-7094-77-04416-7
[16] Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. Lect. Notes Math. 627, 105-169. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0372.10017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.