×

Influence of the Schwinger effect on radiatively corrected Higgs inflationary magnetogenesis. (English) Zbl 1495.83057

Summary: We study the generation of magnetic fields in the Higgs inflation model with the axial coupling in order to break the conformal invariance of the Maxwell action and produce strong magnetic fields. We consider radiatively corrected Higgs inflation potential of our previous work in [ibid. 53, No. 5, Paper No. 53, 23 p. (2021; Zbl 1483.83087)]. In comparison to the Starobinsky potential, we obtain an extra term as a one loop correction and determine the spectrum of generalized electromagnetic fields. For two values of coupling parameter \(\chi_1=5\times 10^9\) and \(\chi_1=7.5\times 10^9\), the back-reaction is weak and our analysis is valid. When we switch on the Schwinger effect, there is no difference in background inflaton field. Therefore, for range of parameters considered and analyzed in this model, the Schwinger effect in Radiatively corrected Higgs model is quite negligible and play no roles in magnetogenesis.

MSC:

83E05 Geometrodynamics and the holographic principle
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
78A25 Electromagnetic theory (general)
81R40 Symmetry breaking in quantum theory
53C18 Conformal structures on manifolds
83C25 Approximation procedures, weak fields in general relativity and gravitational theory

Citations:

Zbl 1483.83087
Full Text: DOI

References:

[1] Bezrukov, FL; Shaposhnikov, M., The standard model Higgs Boson as the inflation, Phys. Lett. B, 659 (2008) · doi:10.1016/j.physletb.2007.11.072
[2] Subramanian, K., The origin, evolution and signatures of primordial magnetic fields, Rep. Prog. Phys., 79 (2016) · doi:10.1088/0034-4885/79/7/076901
[3] Vilchinskii, S.; Sobol, O.; Gorbar, EV; Rudennok, I., Magnetogenesis during inflation and preheating in the Starobinsky model, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.083509
[4] Martin, J.; Yokoyama, J., Generation of large-scale magnetic fields in single-field inflation, JCAP, 01, 025 (2008) · doi:10.1088/1475-7516/2008/01/025
[5] Ketov, S.V.: Modified Supergravity and Early Universe: the Meeting Point of Cosmology and High-Energy Physics arXiv:1201.2239v3 [hep-th]
[6] Savchenko, O., Shtanov, Y.: Magnetogenesis by non-minimal coupling to gravity in the Starobinsky inflationary model, arXiv:1808.06193v1 · Zbl 1536.83200
[7] Barvinsky, A.; Kamenshchik, AY; Starobinsky, A., Inflation scenario via the Standard Model Higgs boson and LHC, JCAP, 0811, 021 (2008) · doi:10.1088/1475-7516/2008/11/021
[8] Steinwachs, C.F., Kamenshchik, A.Y.: Non-minimal Higgs Inflation and Frame Dependence in Cosmology, arXiv:1301.5543 · Zbl 1293.81006
[9] Martin, J.; Ringeval, C.; Vennin, V., Encyclopædia inflationaris. Phys. Dark Univ., 5-6, 75 (2014) · doi:10.1016/j.dark.2014.01.003
[10] Buttazzo, D.; Degrassi, G.; Giardino, PP; Giudice, GF; Sala, F.; Salvio, A.; Strumia, A., Investigating the near-criticality of the Higgs boson, JHEP, 12, 89, 089 (2013) · doi:10.1007/JHEP12(2013)089
[11] Gorbunov, DS; Rubakov, VA, Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (2011), Singapore: World Scientific Publishing, Singapore · Zbl 1246.83007 · doi:10.1142/7874
[12] Aghanim, N., et al.: (Planck Collaboration): Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209v1
[13] Grasso, D.; Rubinstein, HR, Magnetic fields in the early universe, Phys. Rep., 348, 163 (2001) · doi:10.1016/S0370-1573(00)00110-1
[14] Neronov, A.; Vovk, I., Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars, Science, 328, 73 (2010) · doi:10.1126/science.1184192
[15] Tavecchio, F.; Ghisellini, G.; Foschini, L.; Bonnoli, G.; Ghirlanda, G.; Coppi, P., The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200, Mon. Not. R. Astron. Soc., 406, L70 (2010)
[16] Taylor, AM; Vovk, I.; Neronov, A., Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars, Astron. Astrophys., 529, A144 (2011) · doi:10.1051/0004-6361/201116441
[17] Caprini, C.; Gabici, S., Gamma-ray observations of blazars and the intergalactic magnetic field spectrum, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.123514
[18] Kronberg, PP, Extragalactic magnetic fields, Rep. Prog. Phys., 57, 325 (1994) · doi:10.1088/0034-4885/57/4/001
[19] Widrow, LM, Origin of galactic and extragalactic magnetic fields, Rev. Mod. Phys., 74, 775 (2002) · doi:10.1103/RevModPhys.74.775
[20] Giovannini, M., The magnetized universe, Int. J. Mod. Phys. D, 13, 391 (2004) · Zbl 1058.83004 · doi:10.1142/S0218271804004530
[21] Kandus, A.; Kunze, KE; Tsagas, CG, Primordial magnetogenesis, Phys. Rep., 505, 1 (2011) · doi:10.1016/j.physrep.2011.03.001
[22] Durrer, R.; Neronov, A., Cosmological magnetic fields: their generation, evolution and observation, Astron. Astrophys. Rev., 21, 62 (2013) · doi:10.1007/s00159-013-0062-7
[23] Ade, P.A.R., et al.: (Planck Collaboration): Planck 2015 results. XIX. Constraints on primordial magnetic fields. Astron. Astrophys. 594, A19 (2016)
[24] Sutton, DR; Feng, C.; Reichardt, CL, Current and future constraints on primordial magnetic fields, Astrophys. J., 846, 164 (2017) · doi:10.3847/1538-4357/aa85e2
[25] Jedamzik, K., Saveliev, A.: A stringent limit on primordial magnetic fields from the cosmic microwave backround radiation, arXiv:1804.06115 [astro-ph.CO]
[26] Turner, MS; Widrow, LM, Inflation-produced, large-scale magnetic fields, Phys. Rev. D, 37, 2743 (1988) · doi:10.1103/PhysRevD.37.2743
[27] Ratra, B., Cosmological ‘seed’ magnetic field from inflation, Astrophys. J., 391, L1 (1992) · doi:10.1086/186384
[28] Parker, L., Particle creation in expanding universes, Phys. Rev. Lett., 21, 562 (1968) · doi:10.1103/PhysRevLett.21.562
[29] Garretson, WD; Field, GB; Carroll, SM, Primordial magnetic fields from pseudo Goldstone bosons, Phys. Rev. D, 46, 5346 (1992) · doi:10.1103/PhysRevD.46.5346
[30] Dolgov, AD, Breaking of conformal invariance and electromagnetic field generation in the universe, Phys. Rev. D, 48, 2499 (1993) · doi:10.1103/PhysRevD.48.2499
[31] Giovannini, M., On the variation of the gauge couplings during inflation, Phys. Rev. D, 64 (2001) · doi:10.1103/PhysRevD.64.061301
[32] Bamba, K.; Yokoyama, J., Large scale magnetic fields from inflation in dilaton electromagnetism, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.043507
[33] Demozzi, V.; Mukhanov, VM; Rubinstein, H., Magnetic fields from inflation?, J. Cosmol. Astropart. Phys., 08, 025 (2009) · doi:10.1088/1475-7516/2009/08/025
[34] Kanno, S.; Soda, J.; Watanabe, M., Cosmological magnetic fields from inflation and backreaction, J. Cosmol. Astropart. Phys., 12, 009 (2009) · doi:10.1088/1475-7516/2009/12/009
[35] Ferreira, RJZ; Jain, RK; Sloth, MS, Inflationary magnetogenesis without the strong coupling problem, J. Cosmol. Astropart. Phys., 10, 004 (2013) · doi:10.1088/1475-7516/2013/10/004
[36] Ferreira, RJZ; Jain, RK; Sloth, MS, Inflationary magnetogenesis without the strong coupling problem II: Constraints from CMB anisotropies and B-modes, J. Cosmol. Astropart. Phys., 06, 053 (2014) · doi:10.1088/1475-7516/2014/06/053
[37] Guth, A.: The Inflationary Universe: The Quest for a New Theory of Cosmic Origins (Perseus Books, 1997)
[38] Linde, A., Particle physics and inflationary cosmology, Contemp. Concepts Phys., 5, 1 (2005)
[39] Mukhanov, V.: Physical Foundations of Cosmology, Cambridge University Press (2005) · Zbl 1095.83002
[40] Bezrukov, F.; Gorbunov, D.; Shaposhnikov, M., On the initial conditions from the hot big bang, JCAP, 0906, 029 (2009) · doi:10.1088/1475-7516/2009/06/029
[41] Garcia-Bellindo, J.; Figueroa, DG; Rubio, J., Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.063531
[42] Bezrukov, FL; Magnin, A.; Shaposhnikov, M., Standard model Higgs boson mass from inflation, Phys. Lett. B, 675, 703 (2009) · doi:10.1016/j.physletb.2009.03.035
[43] de Simone, A.; Hertzberg, MP; Wilczek, F., Running inflation in the standard model, Phys. Lett. B, 678, 1 (2008) · doi:10.1016/j.physletb.2009.05.054
[44] Maeda, K., ichi: Towards the Einstein-Hilbert action via conformal transformation, Phys. Rev. D, 39, 3159 (1989) · doi:10.1103/PhysRevD.39.3159
[45] Barvinsky, AO; Kamenshchik, AY; Kiefer, C.; Starobinsky, AA; Steinwachs, C., Asymptotic freedom in inflationary cosmology with a non-minimal coupled Higgs field, JCAP, 0912, 003 (2009) · doi:10.1088/1475-7516/2009/12/003
[46] Bezrukov, F.; Rubio, J.; Shaposhnikov, M., Living beyond the edge: Higgs inflation and vacuum metastability, Phys. Rev. D, 92, 88 (2009)
[47] Barvinsky, AO; Shaposhnikov, M., Standard Model Higgs boson mass from inflation: two loop analysis, JHEP, 07, 089 (2009)
[48] Durrer, R.; Hollenstein, L.; Jain, R., Can slow roll inflation induce relevant helical magnetic fields, JCAP, 03, 037 (2011) · doi:10.1088/1475-7516/2011/03/037
[49] Sobol, OO; Gorbar, EV; Vilchinskii, SI, Backreaction of electromagnetic fields and the Schwinger effect in pseudoscalar inflation magnetogenesis, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.063523
[50] Kobayashi, T.; Afshordi, N., Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early Universe, J. High Energy Phys., 10, 166 (2014) · Zbl 1333.83272 · doi:10.1007/JHEP10(2014)166
[51] Fujita, T.; Yokoyama, J., Fermionic Schwinger effect and induced current in de Sitter space, J. Cosmol. Astropart. Phys., 07, 010 (2016)
[52] Frob, M.B., Gariga, J., Kano, S., Sasaki, M., Soda, J., Tanaka, T., Vilenkin, A.: Schwinger effect in de Sitter space, 26 Jan (2014) arXiv :4137v2 [hep-th]
[53] Stahl, C., Schwinger effect impacting primordial magnetogenesis, Nucl. Phys. B, 939, 95 (2018) · Zbl 1409.83240 · doi:10.1016/j.nuclphysb.2018.12.017
[54] Bavarsad, E.; Stahl, C.; Xue, S-S, Scalar current of created pairs by Schwinger mechanism in de Sitter spacetimePhys, Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.104011
[55] Stahl, C.; Strobel, E.; Xue, S-S, Fermionic current and Schwinger effect in de Sitter spacetime, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.025004
[56] Stahl, C.; Xue, S-S, Schwinger effect and backreaction in de Sitter spacetime, Phys. Lett. B, 760, 288 (2016) · doi:10.1016/j.physletb.2016.07.011
[57] Hayashinaka, T.; Fujita, T.; Yokoyama, J., Fermionic Schwinger effect and induced current in de Sitter space, J. Cosmol. Astropart. Phys., 07, 010 (2016) · doi:10.1088/1475-7516/2016/07/010
[58] Hayashinaka, T.; Yokoyama, J., Point splitting renormalization of Schwinger induced current in de Sitter spacetime, J. Cosmol. Astropart. Phys., 07, 012 (2016) · doi:10.1088/1475-7516/2016/07/012
[59] Sharma, R.; Singh, S., Multifaceted Schwinger effect in de Sitter space, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.025012
[60] Tangarife, W.; Tobioka, K.; Ubaldi, L.; Volansky, T., Dynamics of relaxed inflation, J. High Energy Phys., 02, 084 (2018) · Zbl 1387.83142 · doi:10.1007/JHEP02(2018)084
[61] Bavarsad, E.; Kim, SP; Stahl, C.; Xue, S-S, Effect of a magnetic field on Schwinger mechanism in de Sitter spacetime, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.025017
[62] Hayashinaka, T.; Xue, S-S, Physical renormalization condition for de Sitter QED, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.105010
[63] Hayashinaka, T.: Analytical Investigation into Electromagnetic Response of Quantum Fields in de Sitter Spacetime, Ph.D. thesis, University of Tokyo, (2018)
[64] Geng, J-J; Li, B-F; Soda, J.; Wang, A.; Wu, Q.; Zhu, T., Schwinger pair production by electric field coupled to inflaton, J. Cosmol. Astropart. Phys., 02, 018 (2018) · Zbl 1527.83136 · doi:10.1088/1475-7516/2018/02/018
[65] Giovannini, M., Spectator electric fields, de Sitter spacetime, and the Schwinger effect, Phys. Rev. D, 97, 061301(R) (2018) · doi:10.1103/PhysRevD.97.061301
[66] Kitamoto, H., Schwinger effect in inflaton-driven electric field, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.103512
[67] Schwinger, J., On gauge invariance and vacuum polarization, Phys. Rev., 82, 664 (1951) · Zbl 0043.42201 · doi:10.1103/PhysRev.82.664
[68] Sharma, R.; Jagannathan, S.; Seshadri, TR; Subramanian, K., Challenges in inflationary magnetogenesis: constraints from strong coupling, backreaction, and the Schwinger effect, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.083511
[69] Sobol, OO; Gorbar, EV; Kamarpour, M.; Vilchinskii, SI, Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.063534
[70] Fröb, MB; Garriga, J.; Kanno, S.; Sasaki, M.; Soda, J.; Tanaka, T.; Vilenkin, A., Schwinger effect in de Sitter space, J. Cosmol. Astropart. Phys., 04, 009 (2014) · doi:10.1088/1475-7516/2014/04/009
[71] Banyeres, M.; Domènech, G.; Garriga, J., Vacuum birefringence and the Schwinger effect in (3+1) de Sitter, J. Cosmol. Astropart. Phys., 10, 023 (2018) · Zbl 1536.83017 · doi:10.1088/1475-7516/2018/10/023
[72] Kamarpour, M., Magnetogenesis in Higgs inflation model, General Relat. Gravit. (2021) · Zbl 1483.83087 · doi:10.1007/s10714-021-02824-0
[73] Kamarpour, M., Magnetogenessis by non-minimal coupling to gravity in Higgs inflation model, Ann. Phys., 428 (2021) · Zbl 1464.85003 · doi:10.1016/j.aop.2021.168459
[74] Gorbar, E.V., Schmitz, K., Sobol, O.O., Vilchinskii, S.I.: Gauge-field production during axion inflation in the gradient expansion formalism, Phys. Rev. D 104(12), 123504 (2021) [arXiv:2109.01651v2 [hep-ph]] 2 Dec 2021
[75] Sobol, OO; Gorbar, EV; Teslyk, OM; Vilchinskii, SI, Generation of electromagnetic field nonminimally coupled to gravity during the Higgs inflation, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.043509
[76] Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91 (1980) · Zbl 1371.83222
[77] Spokoiny, BL, Inflation and generation of perturbations in broken-symmetric theory of gravity, Phys. Lett. B, 147, 39 (1984) · doi:10.1016/0370-2693(84)90587-2
[78] Anber, MM; Sorbo, L., Naturally inflating on steep potentials through electromagnetic dissipation, Phys. Rev. D (2010) · doi:10.1103/PhysRevD.81.043534
[79] Ballardini, M., Braglia, M., Finelli, F., Marozzi, G., Starobinsky, A.A.: Energy-momentum tensor and helicity for gauge fields coupled to a pseudo-scalar inflaton. Phys. Rev. D 100 (2019) arXiv:1910.13448
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.