×

Vacuum birefringence and the Schwinger effect in (3+1) de Sitter. (English) Zbl 1536.83017

Summary: In de Sitter space, the current induced by an electric field in vacuum is known to feature certain peculiarities, such as infrared hyperconductivity for light bosons in weak electric fields. Moreover, negative conductivity has been claimed to occur for light bosons in moderate electric fields, and for fermions of any mass in electric fields below a certain threshold. Furthemore, in the limit of large mass and weak electric field, the current contains terms which are not exponentially suppressed, contrary to the semiclassical intuition. Here we explain these behaviors, showing that most of the reported negative conductivity is spurious. First, we show that the terms which are not exponentially suppressed follow precisely from the local Euler-Heisenberg Lagrangian (suitably generalized to curved space). Thus, such terms are unrelated to pair creation or to the transport of electric charge. Rather, they correspond to non-linearities of the electric field (responsible in particular for vacuum birefringence). The remaining contributions are exponentially suppressed and correspond to the creation of Schwinger pairs. Second, we argue that for light carriers the negative term in the regularized current does not correspond to a negative conductivity, but to the logarithmic running of the electric coupling constant, up to the high energy Hubble scale. We conclude that none of the above mentioned negative contributions can cause an instability such as the spontaneous growth of an electric field in de Sitter, at least within the weak coupling regime. Third, we provide a heuristic derivation of infrared hyperconductivity, which clarifies its possible role in magnetogenesis scenarios.

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory
83C50 Electromagnetic fields in general relativity and gravitational theory
83F05 Relativistic cosmology

References:

[1] J. Garriga, 1994 Pair production by an electric field in (1+1)-dimensional de Sitter space, https://doi.org/10.1103/PhysRevD.49.6343 Phys. Rev. D 49 6343 · doi:10.1103/PhysRevD.49.6343
[2] M.B. Fröb et al., 2014 Schwinger effect in de Sitter space J. Cosmol. Astropart. Phys.2014 04 009 [1401.4137]
[3] T. Kobayashi and N. Afshordi, 2014 Schwinger Effect in 4D de Sitter Space and Constraints on Magnetogenesis in the Early Universe J. High Energy Phys. JHEP10(2014)166 [1408.4141] · Zbl 1333.83272 · doi:10.1007/JHEP10(2014)166
[4] T. Hayashinaka, T. Fujita and J. Yokoyama, 2016 Fermionic Schwinger effect and induced current in de Sitter space J. Cosmol. Astropart. Phys.2016 07 010 [1603.04165]
[5] T. Hayashinaka and J. Yokoyama, 2016 Point splitting renormalization of Schwinger induced current in de Sitter spacetime J. Cosmol. Astropart. Phys.2016 07 012 [1603.06172]
[6] C. Stahl, E. Strobel and S.-S. Xue, 2016 Fermionic current and Schwinger effect in de Sitter spacetime, https://doi.org/10.1103/PhysRevD.93.025004 Phys. Rev. D 93 025004 [1507.01686] · doi:10.1103/PhysRevD.93.025004
[7] E. Bavarsad, C. Stahl and S.-S. Xue, 2016 Scalar current of created pairs by Schwinger mechanism in de Sitter spacetime, https://doi.org/10.1103/PhysRevD.94.104011 Phys. Rev. D 94 104011 [1602.06556] · doi:10.1103/PhysRevD.94.104011
[8] E. Bavarsad, S.P. Kim, C. Stahl and S.-S. Xue, 2018 Effect of a magnetic field on Schwinger mechanism in de Sitter spacetime, https://doi.org/10.1103/PhysRevD.97.025017 Phys. Rev. D 97 025017 [1707.03975] · doi:10.1103/PhysRevD.97.025017
[9] T. Hayashinaka and S.-S. Xue, 2018 Physical renormalization condition for de Sitter QED, https://doi.org/10.1103/PhysRevD.97.105010 Phys. Rev. D 97 105010 [1802.03686] · doi:10.1103/PhysRevD.97.105010
[10] C. Stahl, Schwinger effect impacting primordial magnetogenesis, [1806.06692]
[11] A. Neronov and I. Vovk, 2010 Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars, https://doi.org/10.1126/science.1184192 Science328 73 [1006.3504] · doi:10.1126/science.1184192
[12] F. Tavecchio, G. Ghisellini, G. Bonnoli and L. Foschini, 2011 Extreme TeV blazars and the intergalactic magnetic field, https://doi.org/10.1111/j.1365-2966.2011.18657.x Mon. Not. Roy. Astron. Soc.414 3566 [1009.1048] · doi:10.1111/j.1365-2966.2011.18657.x
[13] F. Tavecchio, G. Ghisellini, L. Foschini, G. Bonnoli, G. Ghirlanda and P. Coppi, 2010 The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200, https://doi.org/10.1111/j.1745-3933.2010.00884.x Mon. Not. Roy. Astron. Soc.406 L70 [1004.1329] · doi:10.1111/j.1745-3933.2010.00884.x
[14] A.M. Taylor, I. Vovk and A. Neronov, 2011 Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars, https://doi.org/10.1051/0004-6361/201116441 Astron. Astrophys.529 A144 [1101.0932] · doi:10.1051/0004-6361/201116441
[15] A. Kandus, K.E. Kunze and C.G. Tsagas, 2011 Primordial magnetogenesis, https://doi.org/10.1016/j.physrep.2011.03.001 Phys. Rept.505 1 [1007.3891] · doi:10.1016/j.physrep.2011.03.001
[16] R. Durrer and A. Neronov, 2013 Cosmological Magnetic Fields: Their Generation, Evolution and Observation, https://doi.org/10.1007/s00159-013-0062-7 Astron. Astrophys. Rev.21 62 [1303.7121] · doi:10.1007/s00159-013-0062-7
[17] K. Subramanian, 2016 The origin, evolution and signatures of primordial magnetic fields, https://doi.org/10.1088/0034-4885/79/7/076901 Rept. Prog. Phys.79 076901 [1504.02311] · doi:10.1088/0034-4885/79/7/076901
[18] M.S. Turner and L.M. Widrow, 1988 Inflation Produced, Large Scale Magnetic Fields, https://doi.org/10.1103/PhysRevD.37.2743 Phys. Rev. D 37 2743 · doi:10.1103/PhysRevD.37.2743
[19] B. Ratra, 1992 Cosmological “seed” magnetic field from inflation, https://doi.org/10.1086/186384 Astrophys. J.391 L1 · doi:10.1086/186384
[20] J.D. Bekenstein, 1982 Fine Structure Constant: Is It Really a Constant?, https://doi.org/10.1103/PhysRevD.25.1527 Phys. Rev. D 25 1527 · doi:10.1103/PhysRevD.25.1527
[21] K. Bamba and M. Sasaki, 2007 Large-scale magnetic fields in the inflationary universe J. Cosmol. Astropart. Phys.2007 02 030 [astro-ph/0611701]
[22] V. Demozzi, V. Mukhanov and H. Rubinstein, 2009 Magnetic fields from inflation? J. Cosmol. Astropart. Phys.2009 08 025 [0907.1030]
[23] T. Suyama and J. Yokoyama, 2012 Metric perturbation from inflationary magnetic field and generic bound on inflation models, https://doi.org/10.1103/PhysRevD.86.023512 Phys. Rev. D 86 023512 [1204.3976] · doi:10.1103/PhysRevD.86.023512
[24] T. Fujita and S. Mukohyama, 2012 Universal upper limit on inflation energy scale from cosmic magnetic field J. Cosmol. Astropart. Phys.2012 10 034 [1205.5031]
[25] T. Fujita and S. Yokoyama, 2013 Higher order statistics of curvature perturbations in IFF model and its Planck constraints J. Cosmol. Astropart. Phys.2013 09 009 [1306.2992]
[26] T. Fujita and S. Yokoyama, 2014 Critical constraint on inflationary magnetogenesis J. Cosmol. Astropart. Phys.2014 03 013 [Erratum ibid 05 (2014) E02] [1402.0596]
[27] R.J.Z. Ferreira, R.K. Jain and M.S. Sloth, 2013 Inflationary magnetogenesis without the strong coupling problem J. Cosmol. Astropart. Phys.2013 10 004 [1305.7151]
[28] R.J.Z. Ferreira, R.K. Jain and M.S. Sloth, 2014 Inflationary Magnetogenesis without the Strong Coupling Problem II: Constraints from CMB anisotropies and B-modes J. Cosmol. Astropart. Phys.2014 06 053 [1403.5516]
[29] D. Green and T. Kobayashi, 2016 Constraints on Primordial Magnetic Fields from Inflation J. Cosmol. Astropart. Phys.2016 03 010 [1511.08793]
[30] T. Fujita, R. Namba, Y. Tada, N. Takeda and H. Tashiro, 2015 Consistent generation of magnetic fields in axion inflation models J. Cosmol. Astropart. Phys.2015 05 054 [1503.05802]
[31] G. Domènech, C. Lin and M. Sasaki, 2016 Inflationary Magnetogenesis with Broken Local U(1) Symmetry, https://doi.org/10.1209/0295-5075/115/19001 EPL115 19001 [1512.01108] · doi:10.1209/0295-5075/115/19001
[32] T. Fujita and R. Namba, 2016 Pre-reheating Magnetogenesis in the Kinetic Coupling Model, https://doi.org/10.1103/PhysRevD.94.043523 Phys. Rev. D 94 043523 [1602.05673] · doi:10.1103/PhysRevD.94.043523
[33] R. Sharma, S. Jagannathan, T.R. Seshadri and K. Subramanian, 2017 Challenges in Inflationary Magnetogenesis: Constraints from Strong Coupling, Backreaction and the Schwinger Effect, https://doi.org/10.1103/PhysRevD.96.083511 Phys. Rev. D 96 083511 [1708.08119] · doi:10.1103/PhysRevD.96.083511
[34] L. Motta and R.R. Caldwell, 2012 Non-Gaussian features of primordial magnetic fields in power-law inflation, https://doi.org/10.1103/PhysRevD.85.103532 Phys. Rev. D 85 103532 [1203.1033] · doi:10.1103/PhysRevD.85.103532
[35] M. Giovannini, 2013 Inflationary susceptibilities, duality and large-scale magnetic field generation, https://doi.org/10.1103/PhysRevD.88.083533 Phys. Rev. D 88 083533 [1310.1802] · doi:10.1103/PhysRevD.88.083533
[36] G. Tasinato, 2015 A scenario for inflationary magnetogenesis without strong coupling problem J. Cosmol. Astropart. Phys.2015 03 040 [1411.2803]
[37] K.D. Lozanov, A. Maleknejad and E. Komatsu, Schwinger Effect by an SU(2) Gauge Field during Inflation, [1805.09318]
[38] M.-a. Watanabe, S. Kanno and J. Soda, 2009 Inflationary Universe with Anisotropic Hair, https://doi.org/10.1103/PhysRevLett.102.191302 Phys. Rev. Lett.102 191302 [0902.2833] · doi:10.1103/PhysRevLett.102.191302
[39] A. Ito and J. Soda, 2018 Anisotropic Constant-roll Inflation, https://doi.org/10.1140/epjc/s10052-018-5534-5 Eur. Phys. J. C 78 55 [1710.09701] · doi:10.1140/epjc/s10052-018-5534-5
[40] H. Kitamoto, Schwinger Effect in Inflaton-Driven Electric Field, [1807.03753]
[41] C. Stahl and S.-S. Xue, 2016 Schwinger effect and backreaction in de Sitter spacetime, https://doi.org/10.1016/j.physletb.2016.07.011 Phys. Lett. B 760 288 [1603.07166] · doi:10.1016/j.physletb.2016.07.011
[42] O.O. Sobol, E.V. Gorbar, M. Kamarpour and S.I. Vilchinskii, 2018 Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis, https://doi.org/10.1103/PhysRevD.98.063534 Phys. Rev. D 98 063534 [1807.09851] · doi:10.1103/PhysRevD.98.063534
[43] J.S. Heyl and L. Hernquist, 1997 Birefringence and dichroism of the QED vacuum, https://doi.org/10.1088/0305-4470/30/18/022 J. Phys. A 30 6485 [hep-ph/9705367] · Zbl 1042.81588 · doi:10.1088/0305-4470/30/18/022
[44] R.-G. Cai and S.P. Kim, 2014 One-Loop Effective Action and Schwinger Effect in (Anti-) de Sitter Space J. High Energy Phys. JHEP09(2014)072 [1407.4569] · Zbl 1333.83129 · doi:10.1007/JHEP09(2014)072
[45] G.V. Dunne, Heisenberg-Euler effective Lagrangians: Basics and extensions, in M. Shifman et al. eds. From fields to strings, vol. 1, pp. 445-522, [hep-th/0406216] · Zbl 1081.81116
[46] A. Codello and O. Zanusso, 2013 On the non-local heat kernel expansion, https://doi.org/10.1063/1.4776234 J. Math. Phys.54 013513 [1203.2034] · Zbl 1282.35181 · doi:10.1063/1.4776234
[47] A.O. Barvinsky and G.A. Vilkovisky, 1990 Covariant perturbation theory. 2: Second order in the curvature. General algorithms, https://doi.org/10.1016/0550-3213(90)90047-H Nucl. Phys. B 333 471 · doi:10.1016/0550-3213(90)90047-H
[48] M. Srednicki, 2007 Quantum field theory, Cambridge University Press, · Zbl 1113.81002 · doi:10.1017/CBO9780511813917
[49] F. Bastianelli, J.M. Davila and C. Schubert, 2009 Gravitational corrections to the Euler-Heisenberg Lagrangian J. High Energy Phys. JHEP03(2009)086 [0812.4849]
[50] J. Garriga and A. Vilenkin, 2013 Living with ghosts in Lorentz invariant theories J. Cosmol. Astropart. Phys.2013 01 036 [1202.1239]
[51] J. Bicak and P. Krtous, 2005 Fields of accelerated sources: Born in de Sitter, https://doi.org/10.1063/1.2009647 J. Math. Phys.46 102504 [gr-qc/0602009] · Zbl 1111.83004 · doi:10.1063/1.2009647
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.